An improved algorithm for robust PCA View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

Sabine Verboven , Peter J. Rousseeuw , Mia Hubert

ABSTRACT

In Croux and Ruiz (1996) a robust principal component algorithm is presented. It is based on projection pursuit to ensure that it can be applied to high-dimensional data. We note that this algorithm has a problem of numerical stability and we develop an improved version. To reduce the computation time we then propose a two-step algorithm. The new algorithm is illustrated on a real data set from chemometrics More... »

PAGES

481-486

References to SciGraph publications

Book

TITLE

COMPSTAT

ISBN

978-3-7908-1326-5
978-3-642-57678-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-57678-2_67

DOI

http://dx.doi.org/10.1007/978-3-642-57678-2_67

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016315425


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "Department of Mathematics and Computer Science, University of Antwerp (UTA), Universiteitsplein, 1, 2610, Wilrijk, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verboven", 
        "givenName": "Sabine", 
        "id": "sg:person.011537146373.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537146373.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "Department of Mathematics and Computer Science, University of Antwerp (UTA), Universiteitsplein, 1, 2610, Wilrijk, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousseeuw", 
        "givenName": "Peter J.", 
        "id": "sg:person.0775337371.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "Department of Mathematics and Computer Science, University of Antwerp (UTA), Universiteitsplein, 1, 2610, Wilrijk, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hubert", 
        "givenName": "Mia", 
        "id": "sg:person.014406052301.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014406052301.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-46992-3_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014224380", 
          "https://doi.org/10.1007/978-3-642-46992-3_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jsfa.2740350116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016786059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.1999.10485591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058287697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.1999.10485670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058287776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1985.10478177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1985.10478181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/62.3.531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059418462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1107758944", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471725331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107758944"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "In Croux and Ruiz (1996) a robust principal component algorithm is presented. It is based on projection pursuit to ensure that it can be applied to high-dimensional data. We note that this algorithm has a problem of numerical stability and we develop an improved version. To reduce the computation time we then propose a two-step algorithm. The new algorithm is illustrated on a real data set from chemometrics", 
    "editor": [
      {
        "familyName": "Bethlehem", 
        "givenName": "Jelke G.", 
        "type": "Person"
      }, 
      {
        "familyName": "van der Heijden", 
        "givenName": "Peter G. M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-57678-2_67", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7908-1326-5", 
        "978-3-642-57678-2"
      ], 
      "name": "COMPSTAT", 
      "type": "Book"
    }, 
    "name": "An improved algorithm for robust PCA", 
    "pagination": "481-486", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016315425"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-57678-2_67"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4dbd177afba82541dcc115b35be4ec7107e0f987aaabd280650f0b29178061f8"
        ]
      }
    ], 
    "publisher": {
      "location": "Heidelberg", 
      "name": "Physica-Verlag HD", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-57678-2_67", 
      "https://app.dimensions.ai/details/publication/pub.1016315425"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68984_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-57678-2_67"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-57678-2_67'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-57678-2_67'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-57678-2_67'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-57678-2_67'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-57678-2_67 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8be1aa792b2c4bdda7115afce928b7ad
4 schema:citation sg:pub.10.1007/978-3-642-46992-3_22
5 https://app.dimensions.ai/details/publication/pub.1107758944
6 https://doi.org/10.1002/0471725331
7 https://doi.org/10.1002/jsfa.2740350116
8 https://doi.org/10.1080/00401706.1999.10485591
9 https://doi.org/10.1080/00401706.1999.10485670
10 https://doi.org/10.1080/01621459.1985.10478177
11 https://doi.org/10.1080/01621459.1985.10478181
12 https://doi.org/10.1093/biomet/62.3.531
13 schema:datePublished 2000
14 schema:datePublishedReg 2000-01-01
15 schema:description In Croux and Ruiz (1996) a robust principal component algorithm is presented. It is based on projection pursuit to ensure that it can be applied to high-dimensional data. We note that this algorithm has a problem of numerical stability and we develop an improved version. To reduce the computation time we then propose a two-step algorithm. The new algorithm is illustrated on a real data set from chemometrics
16 schema:editor N7fc8190bcdc246efac1b66c847094d4b
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N16a161db4ea146b0bbfc37924dc18afe
21 schema:name An improved algorithm for robust PCA
22 schema:pagination 481-486
23 schema:productId N2d212a7742eb4334bf9fa8fb317e7653
24 Nbe198b368fec44cab8cd5d37f186ec70
25 Nd67d9b0b68d5427a849a6b14123a8c07
26 schema:publisher Nfd0f531dc1454e49adf4d4914d175c34
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016315425
28 https://doi.org/10.1007/978-3-642-57678-2_67
29 schema:sdDatePublished 2019-04-16T08:59
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Nbb69eeff88d748d78ac84c9a9533ea6d
32 schema:url https://link.springer.com/10.1007%2F978-3-642-57678-2_67
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N16a161db4ea146b0bbfc37924dc18afe schema:isbn 978-3-642-57678-2
37 978-3-7908-1326-5
38 schema:name COMPSTAT
39 rdf:type schema:Book
40 N2b28cfca0f894b5dbada54d31c62a1e4 rdf:first Ne3951ce2c2ee4e31bf7c5cd888c563b1
41 rdf:rest rdf:nil
42 N2d212a7742eb4334bf9fa8fb317e7653 schema:name readcube_id
43 schema:value 4dbd177afba82541dcc115b35be4ec7107e0f987aaabd280650f0b29178061f8
44 rdf:type schema:PropertyValue
45 N3b4f97c449e54cc4abc4694fe9677dab schema:familyName Bethlehem
46 schema:givenName Jelke G.
47 rdf:type schema:Person
48 N7fbc785da1284777a35576d86f7b129f rdf:first sg:person.0775337371.63
49 rdf:rest Nda024b755e8b4805ab306a4350f58028
50 N7fc8190bcdc246efac1b66c847094d4b rdf:first N3b4f97c449e54cc4abc4694fe9677dab
51 rdf:rest N2b28cfca0f894b5dbada54d31c62a1e4
52 N8be1aa792b2c4bdda7115afce928b7ad rdf:first sg:person.011537146373.06
53 rdf:rest N7fbc785da1284777a35576d86f7b129f
54 Nbb69eeff88d748d78ac84c9a9533ea6d schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Nbe198b368fec44cab8cd5d37f186ec70 schema:name doi
57 schema:value 10.1007/978-3-642-57678-2_67
58 rdf:type schema:PropertyValue
59 Nd67d9b0b68d5427a849a6b14123a8c07 schema:name dimensions_id
60 schema:value pub.1016315425
61 rdf:type schema:PropertyValue
62 Nda024b755e8b4805ab306a4350f58028 rdf:first sg:person.014406052301.59
63 rdf:rest rdf:nil
64 Ne3951ce2c2ee4e31bf7c5cd888c563b1 schema:familyName van der Heijden
65 schema:givenName Peter G. M.
66 rdf:type schema:Person
67 Nfd0f531dc1454e49adf4d4914d175c34 schema:location Heidelberg
68 schema:name Physica-Verlag HD
69 rdf:type schema:Organisation
70 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
71 schema:name Information and Computing Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
74 schema:name Artificial Intelligence and Image Processing
75 rdf:type schema:DefinedTerm
76 sg:person.011537146373.06 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
77 schema:familyName Verboven
78 schema:givenName Sabine
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537146373.06
80 rdf:type schema:Person
81 sg:person.014406052301.59 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
82 schema:familyName Hubert
83 schema:givenName Mia
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014406052301.59
85 rdf:type schema:Person
86 sg:person.0775337371.63 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
87 schema:familyName Rousseeuw
88 schema:givenName Peter J.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63
90 rdf:type schema:Person
91 sg:pub.10.1007/978-3-642-46992-3_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014224380
92 https://doi.org/10.1007/978-3-642-46992-3_22
93 rdf:type schema:CreativeWork
94 https://app.dimensions.ai/details/publication/pub.1107758944 schema:CreativeWork
95 https://doi.org/10.1002/0471725331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107758944
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1002/jsfa.2740350116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016786059
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1080/00401706.1999.10485591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058287697
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1080/00401706.1999.10485670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058287776
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1080/01621459.1985.10478177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303154
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1080/01621459.1985.10478181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303158
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1093/biomet/62.3.531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418462
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.5284.b schema:alternateName University of Antwerp
110 schema:name Department of Mathematics and Computer Science, University of Antwerp (UTA), Universiteitsplein, 1, 2610, Wilrijk, Belgium
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...