An algorithm for the multivariate Tukey median View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

Anja Struyf , Peter J. Rousseeuw

ABSTRACT

The halfspace location depth of a point θ relative to a data set Xn is defined as the smallest number of observations in any closed halfspace with boundary through θ. As such, halfspace depth can be seen as a kind of multivariate ranking. The deepest location, i.e. the θ with maximal halfspace depth, is a multivariate generalization of the median. Until now the deepest location could only be computed for bivariate data. In this paper, we construct an algorithm (called DEEPLOC) to approximate the deepest location in higher dimensions. More... »

PAGES

463-468

References to SciGraph publications

Book

TITLE

COMPSTAT

ISBN

978-3-7908-1326-5
978-3-642-57678-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-57678-2_64

DOI

http://dx.doi.org/10.1007/978-3-642-57678-2_64

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000069101


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1608", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Sociology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/16", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Studies in Human Society", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "Department of Mathematics and Computer Science, University of Antwerp (U.I.A.), Universiteitsplein 1, B-2610, Wilrijk-Antwerpen, Belgium", 
            "Research Assistant with the FWO, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Struyf", 
        "givenName": "Anja", 
        "id": "sg:person.01057276224.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057276224.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "Department of Mathematics and Computer Science, University of Antwerp (U.I.A.), Universiteitsplein 1, B-2610, Wilrijk-Antwerpen, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousseeuw", 
        "givenName": "Peter J.", 
        "id": "sg:person.0775337371.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1008945009397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024868624", 
          "https://doi.org/10.1023/a:1008945009397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(96)00027-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034778667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1018031260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176348890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2986073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2986073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983592"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "The halfspace location depth of a point \u03b8 relative to a data set Xn is defined as the smallest number of observations in any closed halfspace with boundary through \u03b8. As such, halfspace depth can be seen as a kind of multivariate ranking. The deepest location, i.e. the \u03b8 with maximal halfspace depth, is a multivariate generalization of the median. Until now the deepest location could only be computed for bivariate data. In this paper, we construct an algorithm (called DEEPLOC) to approximate the deepest location in higher dimensions.", 
    "editor": [
      {
        "familyName": "Bethlehem", 
        "givenName": "Jelke G.", 
        "type": "Person"
      }, 
      {
        "familyName": "van der Heijden", 
        "givenName": "Peter G. M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-57678-2_64", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7908-1326-5", 
        "978-3-642-57678-2"
      ], 
      "name": "COMPSTAT", 
      "type": "Book"
    }, 
    "name": "An algorithm for the multivariate Tukey median", 
    "pagination": "463-468", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000069101"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-57678-2_64"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "00541f8d299ec29e82eb0ac1f4fcc99bac251f1b6c8f99df28b3a794c478b03f"
        ]
      }
    ], 
    "publisher": {
      "location": "Heidelberg", 
      "name": "Physica-Verlag HD", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-57678-2_64", 
      "https://app.dimensions.ai/details/publication/pub.1000069101"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68943_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-57678-2_64"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-57678-2_64'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-57678-2_64'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-57678-2_64'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-57678-2_64'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-57678-2_64 schema:about anzsrc-for:16
2 anzsrc-for:1608
3 schema:author Nc5a664991689463d9b8d674e4bbd65a9
4 schema:citation sg:pub.10.1023/a:1008945009397
5 https://doi.org/10.1016/s0167-9473(96)00027-8
6 https://doi.org/10.1214/aos/1018031260
7 https://doi.org/10.1214/aos/1176348890
8 https://doi.org/10.2307/2986073
9 schema:datePublished 2000
10 schema:datePublishedReg 2000-01-01
11 schema:description The halfspace location depth of a point θ relative to a data set Xn is defined as the smallest number of observations in any closed halfspace with boundary through θ. As such, halfspace depth can be seen as a kind of multivariate ranking. The deepest location, i.e. the θ with maximal halfspace depth, is a multivariate generalization of the median. Until now the deepest location could only be computed for bivariate data. In this paper, we construct an algorithm (called DEEPLOC) to approximate the deepest location in higher dimensions.
12 schema:editor N636da141577c4aac984137e06302e997
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N199b559477154bfcbd23a9777513760d
17 schema:name An algorithm for the multivariate Tukey median
18 schema:pagination 463-468
19 schema:productId N0cb5b4939e814782af68117f7d1717bc
20 N7f6e56be73ba4883b0962d904c967749
21 Nd516a93ba9634ff796ebec13772e0084
22 schema:publisher Nd7ab2411e83f4132baee22517e84c29a
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000069101
24 https://doi.org/10.1007/978-3-642-57678-2_64
25 schema:sdDatePublished 2019-04-16T08:54
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N68bd8a8e50734fb68689d39eca5b2a99
28 schema:url https://link.springer.com/10.1007%2F978-3-642-57678-2_64
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N0cb5b4939e814782af68117f7d1717bc schema:name doi
33 schema:value 10.1007/978-3-642-57678-2_64
34 rdf:type schema:PropertyValue
35 N199b559477154bfcbd23a9777513760d schema:isbn 978-3-642-57678-2
36 978-3-7908-1326-5
37 schema:name COMPSTAT
38 rdf:type schema:Book
39 N4070743fc62245b79b555eb6cd579e3f rdf:first sg:person.0775337371.63
40 rdf:rest rdf:nil
41 N4af54eab24c74165b01238dad68bf032 rdf:first Ndea8da2ae63f47cf803d25f72a963853
42 rdf:rest rdf:nil
43 N636da141577c4aac984137e06302e997 rdf:first Nb453a9645b894e7484713ed3155d108a
44 rdf:rest N4af54eab24c74165b01238dad68bf032
45 N68bd8a8e50734fb68689d39eca5b2a99 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N7f6e56be73ba4883b0962d904c967749 schema:name dimensions_id
48 schema:value pub.1000069101
49 rdf:type schema:PropertyValue
50 Nb453a9645b894e7484713ed3155d108a schema:familyName Bethlehem
51 schema:givenName Jelke G.
52 rdf:type schema:Person
53 Nc5a664991689463d9b8d674e4bbd65a9 rdf:first sg:person.01057276224.31
54 rdf:rest N4070743fc62245b79b555eb6cd579e3f
55 Nd516a93ba9634ff796ebec13772e0084 schema:name readcube_id
56 schema:value 00541f8d299ec29e82eb0ac1f4fcc99bac251f1b6c8f99df28b3a794c478b03f
57 rdf:type schema:PropertyValue
58 Nd7ab2411e83f4132baee22517e84c29a schema:location Heidelberg
59 schema:name Physica-Verlag HD
60 rdf:type schema:Organisation
61 Ndea8da2ae63f47cf803d25f72a963853 schema:familyName van der Heijden
62 schema:givenName Peter G. M.
63 rdf:type schema:Person
64 anzsrc-for:16 schema:inDefinedTermSet anzsrc-for:
65 schema:name Studies in Human Society
66 rdf:type schema:DefinedTerm
67 anzsrc-for:1608 schema:inDefinedTermSet anzsrc-for:
68 schema:name Sociology
69 rdf:type schema:DefinedTerm
70 sg:person.01057276224.31 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
71 schema:familyName Struyf
72 schema:givenName Anja
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057276224.31
74 rdf:type schema:Person
75 sg:person.0775337371.63 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
76 schema:familyName Rousseeuw
77 schema:givenName Peter J.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63
79 rdf:type schema:Person
80 sg:pub.10.1023/a:1008945009397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024868624
81 https://doi.org/10.1023/a:1008945009397
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/s0167-9473(96)00027-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034778667
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1214/aos/1018031260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406019
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1214/aos/1176348890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408724
88 rdf:type schema:CreativeWork
89 https://doi.org/10.2307/2986073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101983592
90 rdf:type schema:CreativeWork
91 https://www.grid.ac/institutes/grid.5284.b schema:alternateName University of Antwerp
92 schema:name Department of Mathematics and Computer Science, University of Antwerp (U.I.A.), Universiteitsplein 1, B-2610, Wilrijk-Antwerpen, Belgium
93 Research Assistant with the FWO, Belgium
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...