A fast algorithm for highly robust regression in data mining View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

Peter J. Rousseeuw , Katrien Van Driessen

ABSTRACT

Data mining aims to extract previously unknown patterns or substructures from large databases. In statistics, this is what robust estimation and outlier detection were constructed for, see e.g. Rousseeuw and Leroy (1987). Our goal is to construct algorithms which allow us to compute robust results in a data mining context. Such algorithms thus need to be fast, and able to deal with large data sets. More... »

PAGES

421-426

Book

TITLE

COMPSTAT

ISBN

978-3-7908-1326-5
978-3-642-57678-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-57678-2_57

DOI

http://dx.doi.org/10.1007/978-3-642-57678-2_57

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029891008


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "Department of Mathematics and Computer Science, University of Antwerp (UTA), Universiteitsplein 1, B-2610, Wilrijk, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousseeuw", 
        "givenName": "Peter J.", 
        "id": "sg:person.0775337371.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "Faculty of Applied Economics, University of Antwerp (UFSIA), Prinsstraat 13, B-2000, Antwerp, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Driessen", 
        "givenName": "Katrien", 
        "id": "sg:person.016127315362.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016127315362.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00401706.1999.10485670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058287776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1984.10477105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058302950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1107763504", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471725382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107763504"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "Data mining aims to extract previously unknown patterns or substructures from large databases. In statistics, this is what robust estimation and outlier detection were constructed for, see e.g. Rousseeuw and Leroy (1987). Our goal is to construct algorithms which allow us to compute robust results in a data mining context. Such algorithms thus need to be fast, and able to deal with large data sets.", 
    "editor": [
      {
        "familyName": "Bethlehem", 
        "givenName": "Jelke G.", 
        "type": "Person"
      }, 
      {
        "familyName": "van der Heijden", 
        "givenName": "Peter G. M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-57678-2_57", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7908-1326-5", 
        "978-3-642-57678-2"
      ], 
      "name": "COMPSTAT", 
      "type": "Book"
    }, 
    "name": "A fast algorithm for highly robust regression in data mining", 
    "pagination": "421-426", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029891008"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-57678-2_57"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8e6626df07b5c148aa27f311bdb5f43a0d09fce49c43448c5a64953c0377ff73"
        ]
      }
    ], 
    "publisher": {
      "location": "Heidelberg", 
      "name": "Physica-Verlag HD", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-57678-2_57", 
      "https://app.dimensions.ai/details/publication/pub.1029891008"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68956_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-57678-2_57"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-57678-2_57'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-57678-2_57'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-57678-2_57'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-57678-2_57'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-57678-2_57 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nadeac3d371ae46eea6323839541c2436
4 schema:citation https://app.dimensions.ai/details/publication/pub.1107763504
5 https://doi.org/10.1002/0471725382
6 https://doi.org/10.1080/00401706.1999.10485670
7 https://doi.org/10.1080/01621459.1984.10477105
8 schema:datePublished 2000
9 schema:datePublishedReg 2000-01-01
10 schema:description Data mining aims to extract previously unknown patterns or substructures from large databases. In statistics, this is what robust estimation and outlier detection were constructed for, see e.g. Rousseeuw and Leroy (1987). Our goal is to construct algorithms which allow us to compute robust results in a data mining context. Such algorithms thus need to be fast, and able to deal with large data sets.
11 schema:editor N72777fdd8ded45c6bfb7818cb0838942
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N3812048f5ad24984b900f3ab094a28d5
16 schema:name A fast algorithm for highly robust regression in data mining
17 schema:pagination 421-426
18 schema:productId N716a95e20d3246ecb29c175150e415e1
19 Ndb3df3b2d75548b2929cd06e38ef0770
20 Nf7e036eddc9d4cbebc40cb31af4cf1f6
21 schema:publisher N0899fdf20c23460aaf6b4f0ee9ef6ea4
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029891008
23 https://doi.org/10.1007/978-3-642-57678-2_57
24 schema:sdDatePublished 2019-04-16T08:56
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N1cf25ff38df94af9af3f2f793bf43ac1
27 schema:url https://link.springer.com/10.1007%2F978-3-642-57678-2_57
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N0899fdf20c23460aaf6b4f0ee9ef6ea4 schema:location Heidelberg
32 schema:name Physica-Verlag HD
33 rdf:type schema:Organisation
34 N1cf25ff38df94af9af3f2f793bf43ac1 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N211685b099ce4ad78478424b48be10cf rdf:first N64a9dd9e4f9c4f9ab57b71f549d96cc3
37 rdf:rest rdf:nil
38 N3812048f5ad24984b900f3ab094a28d5 schema:isbn 978-3-642-57678-2
39 978-3-7908-1326-5
40 schema:name COMPSTAT
41 rdf:type schema:Book
42 N64a9dd9e4f9c4f9ab57b71f549d96cc3 schema:familyName van der Heijden
43 schema:givenName Peter G. M.
44 rdf:type schema:Person
45 N716a95e20d3246ecb29c175150e415e1 schema:name dimensions_id
46 schema:value pub.1029891008
47 rdf:type schema:PropertyValue
48 N72777fdd8ded45c6bfb7818cb0838942 rdf:first N82fa9e8f16254f08be45f5b3119ed2e1
49 rdf:rest N211685b099ce4ad78478424b48be10cf
50 N82fa9e8f16254f08be45f5b3119ed2e1 schema:familyName Bethlehem
51 schema:givenName Jelke G.
52 rdf:type schema:Person
53 N8f868a316cd8434e861734c2a84f6246 rdf:first sg:person.016127315362.74
54 rdf:rest rdf:nil
55 Nadeac3d371ae46eea6323839541c2436 rdf:first sg:person.0775337371.63
56 rdf:rest N8f868a316cd8434e861734c2a84f6246
57 Ndb3df3b2d75548b2929cd06e38ef0770 schema:name readcube_id
58 schema:value 8e6626df07b5c148aa27f311bdb5f43a0d09fce49c43448c5a64953c0377ff73
59 rdf:type schema:PropertyValue
60 Nf7e036eddc9d4cbebc40cb31af4cf1f6 schema:name doi
61 schema:value 10.1007/978-3-642-57678-2_57
62 rdf:type schema:PropertyValue
63 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
64 schema:name Information and Computing Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
67 schema:name Artificial Intelligence and Image Processing
68 rdf:type schema:DefinedTerm
69 sg:person.016127315362.74 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
70 schema:familyName Van Driessen
71 schema:givenName Katrien
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016127315362.74
73 rdf:type schema:Person
74 sg:person.0775337371.63 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
75 schema:familyName Rousseeuw
76 schema:givenName Peter J.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63
78 rdf:type schema:Person
79 https://app.dimensions.ai/details/publication/pub.1107763504 schema:CreativeWork
80 https://doi.org/10.1002/0471725382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107763504
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1080/00401706.1999.10485670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058287776
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1080/01621459.1984.10477105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058302950
85 rdf:type schema:CreativeWork
86 https://www.grid.ac/institutes/grid.5284.b schema:alternateName University of Antwerp
87 schema:name Department of Mathematics and Computer Science, University of Antwerp (UTA), Universiteitsplein 1, B-2610, Wilrijk, Belgium
88 Faculty of Applied Economics, University of Antwerp (UFSIA), Prinsstraat 13, B-2000, Antwerp, Belgium
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...