A fast algorithm for highly robust regression in data mining View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

Peter J. Rousseeuw , Katrien Van Driessen

ABSTRACT

Data mining aims to extract previously unknown patterns or substructures from large databases. In statistics, this is what robust estimation and outlier detection were constructed for, see e.g. Rousseeuw and Leroy (1987). Our goal is to construct algorithms which allow us to compute robust results in a data mining context. Such algorithms thus need to be fast, and able to deal with large data sets. More... »

PAGES

421-426

Book

TITLE

COMPSTAT

ISBN

978-3-7908-1326-5
978-3-642-57678-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-57678-2_57

DOI

http://dx.doi.org/10.1007/978-3-642-57678-2_57

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029891008


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "Department of Mathematics and Computer Science, University of Antwerp (UTA), Universiteitsplein 1, B-2610, Wilrijk, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousseeuw", 
        "givenName": "Peter J.", 
        "id": "sg:person.0775337371.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "Faculty of Applied Economics, University of Antwerp (UFSIA), Prinsstraat 13, B-2000, Antwerp, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Driessen", 
        "givenName": "Katrien", 
        "id": "sg:person.016127315362.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016127315362.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00401706.1999.10485670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058287776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1984.10477105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058302950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1107763504", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471725382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107763504"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "Data mining aims to extract previously unknown patterns or substructures from large databases. In statistics, this is what robust estimation and outlier detection were constructed for, see e.g. Rousseeuw and Leroy (1987). Our goal is to construct algorithms which allow us to compute robust results in a data mining context. Such algorithms thus need to be fast, and able to deal with large data sets.", 
    "editor": [
      {
        "familyName": "Bethlehem", 
        "givenName": "Jelke G.", 
        "type": "Person"
      }, 
      {
        "familyName": "van der Heijden", 
        "givenName": "Peter G. M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-57678-2_57", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7908-1326-5", 
        "978-3-642-57678-2"
      ], 
      "name": "COMPSTAT", 
      "type": "Book"
    }, 
    "name": "A fast algorithm for highly robust regression in data mining", 
    "pagination": "421-426", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029891008"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-57678-2_57"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8e6626df07b5c148aa27f311bdb5f43a0d09fce49c43448c5a64953c0377ff73"
        ]
      }
    ], 
    "publisher": {
      "location": "Heidelberg", 
      "name": "Physica-Verlag HD", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-57678-2_57", 
      "https://app.dimensions.ai/details/publication/pub.1029891008"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68956_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-57678-2_57"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-57678-2_57'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-57678-2_57'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-57678-2_57'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-57678-2_57'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-57678-2_57 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6af735acd00c4d0ea905c90a66c158b2
4 schema:citation https://app.dimensions.ai/details/publication/pub.1107763504
5 https://doi.org/10.1002/0471725382
6 https://doi.org/10.1080/00401706.1999.10485670
7 https://doi.org/10.1080/01621459.1984.10477105
8 schema:datePublished 2000
9 schema:datePublishedReg 2000-01-01
10 schema:description Data mining aims to extract previously unknown patterns or substructures from large databases. In statistics, this is what robust estimation and outlier detection were constructed for, see e.g. Rousseeuw and Leroy (1987). Our goal is to construct algorithms which allow us to compute robust results in a data mining context. Such algorithms thus need to be fast, and able to deal with large data sets.
11 schema:editor N9fda0cc8faee4734ac390b7cf72a7398
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N814fbf37482c4684823567905cc46ac5
16 schema:name A fast algorithm for highly robust regression in data mining
17 schema:pagination 421-426
18 schema:productId N20353bedb013489bb02dff7d8403c7aa
19 N5f80029b715d4b8787517a80875863a3
20 Na9a24a49fba841f585af11ecf273ee34
21 schema:publisher N1ae669b03c294ec89dab7ab1d17f2aa9
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029891008
23 https://doi.org/10.1007/978-3-642-57678-2_57
24 schema:sdDatePublished 2019-04-16T08:56
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N360ba25bf0e843b586c2cc5fd90287a8
27 schema:url https://link.springer.com/10.1007%2F978-3-642-57678-2_57
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N1ae669b03c294ec89dab7ab1d17f2aa9 schema:location Heidelberg
32 schema:name Physica-Verlag HD
33 rdf:type schema:Organisation
34 N1b43e44173f34f9ca59b0b7137698374 rdf:first sg:person.016127315362.74
35 rdf:rest rdf:nil
36 N20353bedb013489bb02dff7d8403c7aa schema:name dimensions_id
37 schema:value pub.1029891008
38 rdf:type schema:PropertyValue
39 N26990f1a56b74b20ad6d306162f5b371 rdf:first N7c20d59d4f814140ae237bc8ba2d5ebe
40 rdf:rest rdf:nil
41 N360ba25bf0e843b586c2cc5fd90287a8 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N5f80029b715d4b8787517a80875863a3 schema:name readcube_id
44 schema:value 8e6626df07b5c148aa27f311bdb5f43a0d09fce49c43448c5a64953c0377ff73
45 rdf:type schema:PropertyValue
46 N6af735acd00c4d0ea905c90a66c158b2 rdf:first sg:person.0775337371.63
47 rdf:rest N1b43e44173f34f9ca59b0b7137698374
48 N7c20d59d4f814140ae237bc8ba2d5ebe schema:familyName van der Heijden
49 schema:givenName Peter G. M.
50 rdf:type schema:Person
51 N814fbf37482c4684823567905cc46ac5 schema:isbn 978-3-642-57678-2
52 978-3-7908-1326-5
53 schema:name COMPSTAT
54 rdf:type schema:Book
55 N9fda0cc8faee4734ac390b7cf72a7398 rdf:first Nbac872b9fad24a5b9cbad895d9d005df
56 rdf:rest N26990f1a56b74b20ad6d306162f5b371
57 Na9a24a49fba841f585af11ecf273ee34 schema:name doi
58 schema:value 10.1007/978-3-642-57678-2_57
59 rdf:type schema:PropertyValue
60 Nbac872b9fad24a5b9cbad895d9d005df schema:familyName Bethlehem
61 schema:givenName Jelke G.
62 rdf:type schema:Person
63 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
64 schema:name Information and Computing Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
67 schema:name Artificial Intelligence and Image Processing
68 rdf:type schema:DefinedTerm
69 sg:person.016127315362.74 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
70 schema:familyName Van Driessen
71 schema:givenName Katrien
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016127315362.74
73 rdf:type schema:Person
74 sg:person.0775337371.63 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
75 schema:familyName Rousseeuw
76 schema:givenName Peter J.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63
78 rdf:type schema:Person
79 https://app.dimensions.ai/details/publication/pub.1107763504 schema:CreativeWork
80 https://doi.org/10.1002/0471725382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107763504
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1080/00401706.1999.10485670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058287776
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1080/01621459.1984.10477105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058302950
85 rdf:type schema:CreativeWork
86 https://www.grid.ac/institutes/grid.5284.b schema:alternateName University of Antwerp
87 schema:name Department of Mathematics and Computer Science, University of Antwerp (UTA), Universiteitsplein 1, B-2610, Wilrijk, Belgium
88 Faculty of Applied Economics, University of Antwerp (UFSIA), Prinsstraat 13, B-2000, Antwerp, Belgium
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...