Bayesian Semiparametric Seemingly Unrelated Regression View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

Stefan Lang , Samson B. Adebayo , Ludwig Fahrmeir

ABSTRACT

Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covariates. In this paper, we develop a semiparametric SUR model based on Bayesian P-splines. Inference is fully Bayesian and uses recent Markov chain Monte Carlo techniques. More... »

PAGES

195-200

References to SciGraph publications

Book

TITLE

Compstat

ISBN

978-3-7908-1517-7
978-3-642-57489-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-57489-4_25

DOI

http://dx.doi.org/10.1007/978-3-642-57489-4_25

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049442671


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Department of Statistics, University of Munich, Ludwigstr. 33, 80539, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lang", 
        "givenName": "Stefan", 
        "id": "sg:person.010223676761.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010223676761.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Department of Statistics, University of Munich, Ludwigstr. 33, 80539, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adebayo", 
        "givenName": "Samson B.", 
        "id": "sg:person.01344156460.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344156460.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Department of Statistics, University of Munich, Ludwigstr. 33, 80539, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fahrmeir", 
        "givenName": "Ludwig", 
        "id": "sg:person.0661512671.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661512671.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1030637857", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3454-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030637857", 
          "https://doi.org/10.1007/978-1-4757-3454-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3454-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030637857", 
          "https://doi.org/10.1007/978-1-4757-3454-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1038425655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041521657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-4076(00)00018-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044999293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1962.10480664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058299685"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covariates. In this paper, we develop a semiparametric SUR model based on Bayesian P-splines. Inference is fully Bayesian and uses recent Markov chain Monte Carlo techniques.", 
    "editor": [
      {
        "familyName": "H\u00e4rdle", 
        "givenName": "Wolfgang", 
        "type": "Person"
      }, 
      {
        "familyName": "R\u00f6nz", 
        "givenName": "Bernd", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-57489-4_25", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7908-1517-7", 
        "978-3-642-57489-4"
      ], 
      "name": "Compstat", 
      "type": "Book"
    }, 
    "name": "Bayesian Semiparametric Seemingly Unrelated Regression", 
    "pagination": "195-200", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049442671"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-57489-4_25"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eb88c54de36e8a621244550a19c01a21e3ca49ae0e791fc53bfb98192661813e"
        ]
      }
    ], 
    "publisher": {
      "location": "Heidelberg", 
      "name": "Physica-Verlag HD", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-57489-4_25", 
      "https://app.dimensions.ai/details/publication/pub.1049442671"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46765_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-57489-4_25"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-57489-4_25'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-57489-4_25'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-57489-4_25'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-57489-4_25'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-57489-4_25 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N4e53af2ff0d146d48499f1b7dc8aa18d
4 schema:citation sg:pub.10.1007/978-1-4757-3454-6
5 https://app.dimensions.ai/details/publication/pub.1030637857
6 https://doi.org/10.1016/s0304-4076(00)00018-x
7 https://doi.org/10.1080/01621459.1962.10480664
8 https://doi.org/10.1214/ss/1038425655
9 schema:datePublished 2002
10 schema:datePublishedReg 2002-01-01
11 schema:description Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covariates. In this paper, we develop a semiparametric SUR model based on Bayesian P-splines. Inference is fully Bayesian and uses recent Markov chain Monte Carlo techniques.
12 schema:editor N4c6e4eb7cf4b4db2897a114348c938b9
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N5e0159e3448c4eb1903faf5b079163d9
17 schema:name Bayesian Semiparametric Seemingly Unrelated Regression
18 schema:pagination 195-200
19 schema:productId N8d4d9cf920b540169001e921618292ad
20 N94136dfc3aac4b588d2be7bcc7c01edb
21 Neeff6a7a33ea4d3fb3d753b7e040f3a8
22 schema:publisher Nb854132715d8478aa897626a1da52ca6
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049442671
24 https://doi.org/10.1007/978-3-642-57489-4_25
25 schema:sdDatePublished 2019-04-16T09:05
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nfea2eef813164c3b8b2dfbe49464dd5d
28 schema:url https://link.springer.com/10.1007%2F978-3-642-57489-4_25
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N302544bacb5c4f1886578d11ac96f6ab rdf:first sg:person.0661512671.36
33 rdf:rest rdf:nil
34 N3c79bbf98b9045e58ab4467b90a3897e rdf:first N63162e1c3e5a4fcbaed86d494acaa42b
35 rdf:rest rdf:nil
36 N4c6e4eb7cf4b4db2897a114348c938b9 rdf:first N89909a4426ff4358a5cc6cf79439d780
37 rdf:rest N3c79bbf98b9045e58ab4467b90a3897e
38 N4e53af2ff0d146d48499f1b7dc8aa18d rdf:first sg:person.010223676761.81
39 rdf:rest N601f8fc0affe4307b86e336dafe13326
40 N5e0159e3448c4eb1903faf5b079163d9 schema:isbn 978-3-642-57489-4
41 978-3-7908-1517-7
42 schema:name Compstat
43 rdf:type schema:Book
44 N601f8fc0affe4307b86e336dafe13326 rdf:first sg:person.01344156460.49
45 rdf:rest N302544bacb5c4f1886578d11ac96f6ab
46 N63162e1c3e5a4fcbaed86d494acaa42b schema:familyName Rönz
47 schema:givenName Bernd
48 rdf:type schema:Person
49 N89909a4426ff4358a5cc6cf79439d780 schema:familyName Härdle
50 schema:givenName Wolfgang
51 rdf:type schema:Person
52 N8d4d9cf920b540169001e921618292ad schema:name doi
53 schema:value 10.1007/978-3-642-57489-4_25
54 rdf:type schema:PropertyValue
55 N94136dfc3aac4b588d2be7bcc7c01edb schema:name dimensions_id
56 schema:value pub.1049442671
57 rdf:type schema:PropertyValue
58 Nb854132715d8478aa897626a1da52ca6 schema:location Heidelberg
59 schema:name Physica-Verlag HD
60 rdf:type schema:Organisation
61 Neeff6a7a33ea4d3fb3d753b7e040f3a8 schema:name readcube_id
62 schema:value eb88c54de36e8a621244550a19c01a21e3ca49ae0e791fc53bfb98192661813e
63 rdf:type schema:PropertyValue
64 Nfea2eef813164c3b8b2dfbe49464dd5d schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
70 schema:name Statistics
71 rdf:type schema:DefinedTerm
72 sg:person.010223676761.81 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
73 schema:familyName Lang
74 schema:givenName Stefan
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010223676761.81
76 rdf:type schema:Person
77 sg:person.01344156460.49 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
78 schema:familyName Adebayo
79 schema:givenName Samson B.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344156460.49
81 rdf:type schema:Person
82 sg:person.0661512671.36 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
83 schema:familyName Fahrmeir
84 schema:givenName Ludwig
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661512671.36
86 rdf:type schema:Person
87 sg:pub.10.1007/978-1-4757-3454-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030637857
88 https://doi.org/10.1007/978-1-4757-3454-6
89 rdf:type schema:CreativeWork
90 https://app.dimensions.ai/details/publication/pub.1030637857 schema:CreativeWork
91 https://doi.org/10.1016/s0304-4076(00)00018-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044999293
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1080/01621459.1962.10480664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058299685
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1214/ss/1038425655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041521657
96 rdf:type schema:CreativeWork
97 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
98 schema:name Department of Statistics, University of Munich, Ludwigstr. 33, 80539, Munich, Germany
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...