An Involutive Reduction Method to Find Invariant Solutions for Partial Differential Equations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001

AUTHORS

Joachim Engelmann , Gerd Baumann

ABSTRACT

A standard approach to solve partial diffrential equations is the construction of invariant solutions. These solutions have to fulfill an additional equation called the invariant surface condition. This condition represents the invariance of the equation under a symmetry transformation. To solve the coupled system of the differential equation and its invariant surface condition we used a Mathematica-package which combines involutive and heuristic methods to simplify and solve this coupled system. The procedure is presented by some examples. More... »

PAGES

177-186

Book

TITLE

Computer Algebra in Scientific Computing CASC 2001

ISBN

978-3-642-62684-5
978-3-642-56666-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-56666-0_14

DOI

http://dx.doi.org/10.1007/978-3-642-56666-0_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047921200


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Department of Mathematical Physics, University of Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Engelmann", 
        "givenName": "Joachim", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Department of Mathematical Physics, University of Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany", 
            "Visual Analysis AG, Neumarkter Str. 87, 81673, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baumann", 
        "givenName": "Gerd", 
        "id": "sg:person.01247751074.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247751074.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4612-2110-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021928290", 
          "https://doi.org/10.1007/978-1-4612-2110-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-2110-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021928290", 
          "https://doi.org/10.1007/978-1-4612-2110-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(86)90534-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031754083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(86)90534-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031754083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1046692019", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4307-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046692019", 
          "https://doi.org/10.1007/978-1-4757-4307-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4307-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046692019", 
          "https://doi.org/10.1007/978-1-4757-4307-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4307-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046692019", 
          "https://doi.org/10.1007/978-1-4757-4307-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0956792500000589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053877830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0956792500000589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053877830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0956792500002618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053951753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0956792500000577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054043677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0956792500000577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054043677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/23/17/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059071024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0147018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062840494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4350-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705033", 
          "https://doi.org/10.1007/978-1-4612-4350-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4350-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705033", 
          "https://doi.org/10.1007/978-1-4612-4350-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "A standard approach to solve partial diffrential equations is the construction of invariant solutions. These solutions have to fulfill an additional equation called the invariant surface condition. This condition represents the invariance of the equation under a symmetry transformation. To solve the coupled system of the differential equation and its invariant surface condition we used a Mathematica-package which combines involutive and heuristic methods to simplify and solve this coupled system. The procedure is presented by some examples.", 
    "editor": [
      {
        "familyName": "Ganzha", 
        "givenName": "Victor G.", 
        "type": "Person"
      }, 
      {
        "familyName": "Mayr", 
        "givenName": "Ernst W.", 
        "type": "Person"
      }, 
      {
        "familyName": "Vorozhtsov", 
        "givenName": "Evgenii V.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-56666-0_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-62684-5", 
        "978-3-642-56666-0"
      ], 
      "name": "Computer Algebra in Scientific Computing CASC 2001", 
      "type": "Book"
    }, 
    "name": "An Involutive Reduction Method to Find Invariant Solutions for Partial Differential Equations", 
    "pagination": "177-186", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047921200"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-56666-0_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e448fd9e00baaffa8494e14e16d537e481ea7df7e75b1b45f2064ecb1235d9a9"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-56666-0_14", 
      "https://app.dimensions.ai/details/publication/pub.1047921200"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68947_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-56666-0_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-56666-0_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-56666-0_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-56666-0_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-56666-0_14'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-56666-0_14 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3bd935e366db47019ab3573ceafd54c7
4 schema:citation sg:pub.10.1007/978-1-4612-2110-4
5 sg:pub.10.1007/978-1-4612-4350-2
6 sg:pub.10.1007/978-1-4757-4307-4
7 https://app.dimensions.ai/details/publication/pub.1046692019
8 https://doi.org/10.1016/0375-9601(86)90534-7
9 https://doi.org/10.1017/s0956792500000577
10 https://doi.org/10.1017/s0956792500000589
11 https://doi.org/10.1017/s0956792500002618
12 https://doi.org/10.1088/0305-4470/23/17/001
13 https://doi.org/10.1137/0147018
14 schema:datePublished 2001
15 schema:datePublishedReg 2001-01-01
16 schema:description A standard approach to solve partial diffrential equations is the construction of invariant solutions. These solutions have to fulfill an additional equation called the invariant surface condition. This condition represents the invariance of the equation under a symmetry transformation. To solve the coupled system of the differential equation and its invariant surface condition we used a Mathematica-package which combines involutive and heuristic methods to simplify and solve this coupled system. The procedure is presented by some examples.
17 schema:editor N5e9c7c43f4ea4dad9550e0fb99e55ead
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Nb4e00e80bf944037a4bad682edf13084
22 schema:name An Involutive Reduction Method to Find Invariant Solutions for Partial Differential Equations
23 schema:pagination 177-186
24 schema:productId N299203f72de246c499a3a698962705b5
25 Nd33112e8b6944c2e91e0c3541e1ba288
26 Nd8cd0f417e2542ad8009de47687fd046
27 schema:publisher N84e6ccc0369c43e09451148d15924848
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047921200
29 https://doi.org/10.1007/978-3-642-56666-0_14
30 schema:sdDatePublished 2019-04-16T08:55
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N6071cd8fa65449bb8aef8b7722ccb926
33 schema:url https://link.springer.com/10.1007%2F978-3-642-56666-0_14
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N0269bd4ce5754794b8d914c415d36052 schema:familyName Ganzha
38 schema:givenName Victor G.
39 rdf:type schema:Person
40 N299203f72de246c499a3a698962705b5 schema:name dimensions_id
41 schema:value pub.1047921200
42 rdf:type schema:PropertyValue
43 N2f7ee8c23333494f8f7d98f6703e165d schema:familyName Vorozhtsov
44 schema:givenName Evgenii V.
45 rdf:type schema:Person
46 N3bd935e366db47019ab3573ceafd54c7 rdf:first Nd542ad7f8e7e4235b34c4ab18d1203b0
47 rdf:rest N90d4354146434bf0aa2db2f5d0d4d92e
48 N5531173dea674b29acf9dd25532ae910 rdf:first Nb5532b68b9d4480c8d998af35dc0ec0d
49 rdf:rest Nb01068bad6754783abb1fcee9c12ce5e
50 N5e9c7c43f4ea4dad9550e0fb99e55ead rdf:first N0269bd4ce5754794b8d914c415d36052
51 rdf:rest N5531173dea674b29acf9dd25532ae910
52 N6071cd8fa65449bb8aef8b7722ccb926 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N84e6ccc0369c43e09451148d15924848 schema:location Berlin, Heidelberg
55 schema:name Springer Berlin Heidelberg
56 rdf:type schema:Organisation
57 N90d4354146434bf0aa2db2f5d0d4d92e rdf:first sg:person.01247751074.51
58 rdf:rest rdf:nil
59 Nb01068bad6754783abb1fcee9c12ce5e rdf:first N2f7ee8c23333494f8f7d98f6703e165d
60 rdf:rest rdf:nil
61 Nb4e00e80bf944037a4bad682edf13084 schema:isbn 978-3-642-56666-0
62 978-3-642-62684-5
63 schema:name Computer Algebra in Scientific Computing CASC 2001
64 rdf:type schema:Book
65 Nb5532b68b9d4480c8d998af35dc0ec0d schema:familyName Mayr
66 schema:givenName Ernst W.
67 rdf:type schema:Person
68 Nd33112e8b6944c2e91e0c3541e1ba288 schema:name readcube_id
69 schema:value e448fd9e00baaffa8494e14e16d537e481ea7df7e75b1b45f2064ecb1235d9a9
70 rdf:type schema:PropertyValue
71 Nd542ad7f8e7e4235b34c4ab18d1203b0 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
72 schema:familyName Engelmann
73 schema:givenName Joachim
74 rdf:type schema:Person
75 Nd8cd0f417e2542ad8009de47687fd046 schema:name doi
76 schema:value 10.1007/978-3-642-56666-0_14
77 rdf:type schema:PropertyValue
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
82 schema:name Pure Mathematics
83 rdf:type schema:DefinedTerm
84 sg:person.01247751074.51 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
85 schema:familyName Baumann
86 schema:givenName Gerd
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247751074.51
88 rdf:type schema:Person
89 sg:pub.10.1007/978-1-4612-2110-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021928290
90 https://doi.org/10.1007/978-1-4612-2110-4
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/978-1-4612-4350-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705033
93 https://doi.org/10.1007/978-1-4612-4350-2
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/978-1-4757-4307-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046692019
96 https://doi.org/10.1007/978-1-4757-4307-4
97 rdf:type schema:CreativeWork
98 https://app.dimensions.ai/details/publication/pub.1046692019 schema:CreativeWork
99 https://doi.org/10.1016/0375-9601(86)90534-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031754083
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1017/s0956792500000577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054043677
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1017/s0956792500000589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053877830
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1017/s0956792500002618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053951753
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1088/0305-4470/23/17/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059071024
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1137/0147018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840494
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
112 schema:name Department of Mathematical Physics, University of Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
113 Visual Analysis AG, Neumarkter Str. 87, 81673, München, Germany
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...