Confining and Probing Single Molecules in Synthetic Liposomes View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001

AUTHORS

C. F. Wilson , D. T. Chiu , R. N. Zare , A. Strömberg , A. Karlsson , O. Orwar

ABSTRACT

As organisms, we are amazingly complex living laboratories. As we move, breathe, think, and eat, seemingly endless chemical reactions and interactions occur inside us. The test tubes, beakers, and flasks used to separate and selectively mix the myriad of reactants involved are cells, vesicles, and organelles. Taking the analogy further, whereas chemists typically mix chemicals milliliters or more in volume, biological systems carry out their biochemistry in containers that are femtoliters or less in volume. As researchers we assume, with good reason, that the material surfaces of our laboratory test tubes do not substantially affect the kinetics we measure. This assumption might not hold were we to shrink our containers to the femtoliter scale. At such a small scale, collision rates between reactants and their container walls become significant [1], and the inner surface, particularly in biological containers, is chemically complex. The bilayers of cells and organelles are composed of a variety of lipids. These varieties assemble into domains [2] in a process partly controlled by the transmembrane proteins in them [3]. Cellular and organellar control of chemical reactions may thus come, in part, from alterations in the composition and arrangement of the molecular species making up the bilayer membrane [4]. How do systematic alterations to the bilayer composition of a liposome alter the kinetics of reactions within the liposome interior? We may find that the potential physiological significance of lipid domains within bilayers to the kinetics of in-plane reactions [5] (i.e., for proteins and other molecules moving within the bilayer) has applications to molecules within liposomes that interact with the inner bilayer surface. More... »

PAGES

130-143

References to SciGraph publications

Book

TITLE

Single Molecule Spectroscopy

ISBN

978-3-642-62702-6
978-3-642-56544-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-56544-1_7

DOI

http://dx.doi.org/10.1007/978-3-642-56544-1_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033228911


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Wilson", 
        "givenName": "C. F.", 
        "id": "sg:person.01032773154.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032773154.03"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Chiu", 
        "givenName": "D. T.", 
        "id": "sg:person.01031547776.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031547776.14"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Zare", 
        "givenName": "R. N.", 
        "id": "sg:person.010075246350.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010075246350.09"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Str\u00f6mberg", 
        "givenName": "A.", 
        "id": "sg:person.0645030432.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645030432.97"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Karlsson", 
        "givenName": "A.", 
        "id": "sg:person.0743017147.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743017147.80"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Orwar", 
        "givenName": "O.", 
        "id": "sg:person.01271340367.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271340367.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.282.5395.1877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000423581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/373681a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000431616", 
          "https://doi.org/10.1038/373681a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.274.23.15967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001168089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(95)80377-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003610158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/09687689509038512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009274196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1383-8121(06)80008-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014747015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(89)82898-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016104671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(84)90203-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019395975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(84)90203-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019395975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.283.5409.1892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019756894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.13.6710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022151885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0301-0104(99)00098-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024895462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-3084(94)90179-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025675305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-3084(94)90179-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025675305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.1.7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026091760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.21.11443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027844337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0301-0104(99)00154-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033027384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0014-5793(98)01247-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035641951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/chem.19970030304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036309532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/chem.19970030304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036309532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.20.11075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039326220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(96)79424-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043630536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(94)80529-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043758792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.18.10356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049999505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.3.893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050716613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1383-8121(06)80011-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053347059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac001020m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054972081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac001020m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054972081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00113a019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054972700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac961226g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055073246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac961226g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055073246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac970631k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055074202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac970631k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055074202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00736a026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055186901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9540839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055864254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9540839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055864254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja960978p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055864972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja960978p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055864972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2007-979012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057508451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.430300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058008333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.2094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.2094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.1949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.1949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.273.5277.933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062553885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.279.5354.1190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062559675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7973650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062650774"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "As organisms, we are amazingly complex living laboratories. As we move, breathe, think, and eat, seemingly endless chemical reactions and interactions occur inside us. The test tubes, beakers, and flasks used to separate and selectively mix the myriad of reactants involved are cells, vesicles, and organelles. Taking the analogy further, whereas chemists typically mix chemicals milliliters or more in volume, biological systems carry out their biochemistry in containers that are femtoliters or less in volume. As researchers we assume, with good reason, that the material surfaces of our laboratory test tubes do not substantially affect the kinetics we measure. This assumption might not hold were we to shrink our containers to the femtoliter scale. At such a small scale, collision rates between reactants and their container walls become significant [1], and the inner surface, particularly in biological containers, is chemically complex. The bilayers of cells and organelles are composed of a variety of lipids. These varieties assemble into domains [2] in a process partly controlled by the transmembrane proteins in them [3]. Cellular and organellar control of chemical reactions may thus come, in part, from alterations in the composition and arrangement of the molecular species making up the bilayer membrane [4]. How do systematic alterations to the bilayer composition of a liposome alter the kinetics of reactions within the liposome interior? We may find that the potential physiological significance of lipid domains within bilayers to the kinetics of in-plane reactions [5] (i.e., for proteins and other molecules moving within the bilayer) has applications to molecules within liposomes that interact with the inner bilayer surface.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-56544-1_7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-62702-6", 
        "978-3-642-56544-1"
      ], 
      "name": "Single Molecule Spectroscopy", 
      "type": "Book"
    }, 
    "name": "Confining and Probing Single Molecules in Synthetic Liposomes", 
    "pagination": "130-143", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033228911"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-56544-1_7"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9e4c2868f162ee14b2953739b3a1f01da55f415d15bd15cae8e8c9e166c814ee"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-56544-1_7", 
      "https://app.dimensions.ai/details/publication/pub.1033228911"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78965_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-56544-1_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-56544-1_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-56544-1_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-56544-1_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-56544-1_7'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      22 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-56544-1_7 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Ne4a15fae1ef543cea16e52e1617b3177
4 schema:citation sg:pub.10.1038/373681a0
5 https://doi.org/10.1002/chem.19970030304
6 https://doi.org/10.1016/0005-2736(84)90203-7
7 https://doi.org/10.1016/0009-3084(94)90179-1
8 https://doi.org/10.1016/s0006-3495(89)82898-x
9 https://doi.org/10.1016/s0006-3495(94)80529-6
10 https://doi.org/10.1016/s0006-3495(95)80377-2
11 https://doi.org/10.1016/s0006-3495(96)79424-9
12 https://doi.org/10.1016/s0014-5793(98)01247-2
13 https://doi.org/10.1016/s0301-0104(99)00098-1
14 https://doi.org/10.1016/s0301-0104(99)00154-8
15 https://doi.org/10.1016/s1383-8121(06)80008-4
16 https://doi.org/10.1016/s1383-8121(06)80011-4
17 https://doi.org/10.1021/ac001020m
18 https://doi.org/10.1021/ac00113a019
19 https://doi.org/10.1021/ac961226g
20 https://doi.org/10.1021/ac970631k
21 https://doi.org/10.1021/bi00736a026
22 https://doi.org/10.1021/ja9540839
23 https://doi.org/10.1021/ja960978p
24 https://doi.org/10.1055/s-2007-979012
25 https://doi.org/10.1063/1.430300
26 https://doi.org/10.1073/pnas.93.13.6710
27 https://doi.org/10.1073/pnas.93.21.11443
28 https://doi.org/10.1073/pnas.95.18.10356
29 https://doi.org/10.1073/pnas.96.20.11075
30 https://doi.org/10.1073/pnas.96.3.893
31 https://doi.org/10.1073/pnas.97.1.7
32 https://doi.org/10.1074/jbc.274.23.15967
33 https://doi.org/10.1103/physrevlett.64.2094
34 https://doi.org/10.1103/physrevlett.79.1949
35 https://doi.org/10.1126/science.273.5277.933
36 https://doi.org/10.1126/science.279.5354.1190
37 https://doi.org/10.1126/science.282.5395.1877
38 https://doi.org/10.1126/science.283.5409.1892
39 https://doi.org/10.1126/science.7973650
40 https://doi.org/10.3109/09687689509038512
41 schema:datePublished 2001
42 schema:datePublishedReg 2001-01-01
43 schema:description As organisms, we are amazingly complex living laboratories. As we move, breathe, think, and eat, seemingly endless chemical reactions and interactions occur inside us. The test tubes, beakers, and flasks used to separate and selectively mix the myriad of reactants involved are cells, vesicles, and organelles. Taking the analogy further, whereas chemists typically mix chemicals milliliters or more in volume, biological systems carry out their biochemistry in containers that are femtoliters or less in volume. As researchers we assume, with good reason, that the material surfaces of our laboratory test tubes do not substantially affect the kinetics we measure. This assumption might not hold were we to shrink our containers to the femtoliter scale. At such a small scale, collision rates between reactants and their container walls become significant [1], and the inner surface, particularly in biological containers, is chemically complex. The bilayers of cells and organelles are composed of a variety of lipids. These varieties assemble into domains [2] in a process partly controlled by the transmembrane proteins in them [3]. Cellular and organellar control of chemical reactions may thus come, in part, from alterations in the composition and arrangement of the molecular species making up the bilayer membrane [4]. How do systematic alterations to the bilayer composition of a liposome alter the kinetics of reactions within the liposome interior? We may find that the potential physiological significance of lipid domains within bilayers to the kinetics of in-plane reactions [5] (i.e., for proteins and other molecules moving within the bilayer) has applications to molecules within liposomes that interact with the inner bilayer surface.
44 schema:genre chapter
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf N7306b77de53a4177825861b3ad64af47
48 schema:name Confining and Probing Single Molecules in Synthetic Liposomes
49 schema:pagination 130-143
50 schema:productId N4fb8d5fdde6d4b30bf8ae9879648861f
51 N9be02f3f82f74d86a7de0bdd49ed1441
52 Ndad7e9b8ef664e66bb8414a5c3e36f59
53 schema:publisher N61979054acbe4501a2489f76a13fee8c
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033228911
55 https://doi.org/10.1007/978-3-642-56544-1_7
56 schema:sdDatePublished 2019-04-16T08:52
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N8c33377a43c840699104065e6e42a52b
59 schema:url https://link.springer.com/10.1007%2F978-3-642-56544-1_7
60 sgo:license sg:explorer/license/
61 sgo:sdDataset chapters
62 rdf:type schema:Chapter
63 N02284c5a4e2841bbb44c7b5ebf51c41c rdf:first sg:person.0743017147.80
64 rdf:rest N110c64d433944ea98fddcf4948c489d3
65 N110c64d433944ea98fddcf4948c489d3 rdf:first sg:person.01271340367.75
66 rdf:rest rdf:nil
67 N1924a5dfad0041808ee5cd4ce92b4e13 rdf:first sg:person.010075246350.09
68 rdf:rest N7d8ab0631748487697558ee472a5cf6f
69 N1c8c8a43a16a40b99cd89b56c2a2b8d1 rdf:first sg:person.01031547776.14
70 rdf:rest N1924a5dfad0041808ee5cd4ce92b4e13
71 N4fb8d5fdde6d4b30bf8ae9879648861f schema:name dimensions_id
72 schema:value pub.1033228911
73 rdf:type schema:PropertyValue
74 N61979054acbe4501a2489f76a13fee8c schema:location Berlin, Heidelberg
75 schema:name Springer Berlin Heidelberg
76 rdf:type schema:Organisation
77 N7306b77de53a4177825861b3ad64af47 schema:isbn 978-3-642-56544-1
78 978-3-642-62702-6
79 schema:name Single Molecule Spectroscopy
80 rdf:type schema:Book
81 N7d8ab0631748487697558ee472a5cf6f rdf:first sg:person.0645030432.97
82 rdf:rest N02284c5a4e2841bbb44c7b5ebf51c41c
83 N8c33377a43c840699104065e6e42a52b schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N9be02f3f82f74d86a7de0bdd49ed1441 schema:name readcube_id
86 schema:value 9e4c2868f162ee14b2953739b3a1f01da55f415d15bd15cae8e8c9e166c814ee
87 rdf:type schema:PropertyValue
88 Ndad7e9b8ef664e66bb8414a5c3e36f59 schema:name doi
89 schema:value 10.1007/978-3-642-56544-1_7
90 rdf:type schema:PropertyValue
91 Ne4a15fae1ef543cea16e52e1617b3177 rdf:first sg:person.01032773154.03
92 rdf:rest N1c8c8a43a16a40b99cd89b56c2a2b8d1
93 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
94 schema:name Biological Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
97 schema:name Biochemistry and Cell Biology
98 rdf:type schema:DefinedTerm
99 sg:person.010075246350.09 schema:familyName Zare
100 schema:givenName R. N.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010075246350.09
102 rdf:type schema:Person
103 sg:person.01031547776.14 schema:familyName Chiu
104 schema:givenName D. T.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031547776.14
106 rdf:type schema:Person
107 sg:person.01032773154.03 schema:familyName Wilson
108 schema:givenName C. F.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032773154.03
110 rdf:type schema:Person
111 sg:person.01271340367.75 schema:familyName Orwar
112 schema:givenName O.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271340367.75
114 rdf:type schema:Person
115 sg:person.0645030432.97 schema:familyName Strömberg
116 schema:givenName A.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645030432.97
118 rdf:type schema:Person
119 sg:person.0743017147.80 schema:familyName Karlsson
120 schema:givenName A.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743017147.80
122 rdf:type schema:Person
123 sg:pub.10.1038/373681a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000431616
124 https://doi.org/10.1038/373681a0
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/chem.19970030304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036309532
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0005-2736(84)90203-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019395975
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0009-3084(94)90179-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025675305
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0006-3495(89)82898-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016104671
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0006-3495(94)80529-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043758792
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0006-3495(95)80377-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003610158
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0006-3495(96)79424-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043630536
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0014-5793(98)01247-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035641951
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0301-0104(99)00098-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024895462
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0301-0104(99)00154-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033027384
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s1383-8121(06)80008-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014747015
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s1383-8121(06)80011-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053347059
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/ac001020m schema:sameAs https://app.dimensions.ai/details/publication/pub.1054972081
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1021/ac00113a019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054972700
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1021/ac961226g schema:sameAs https://app.dimensions.ai/details/publication/pub.1055073246
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/ac970631k schema:sameAs https://app.dimensions.ai/details/publication/pub.1055074202
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1021/bi00736a026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055186901
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/ja9540839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055864254
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/ja960978p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055864972
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1055/s-2007-979012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057508451
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1063/1.430300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058008333
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1073/pnas.93.13.6710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022151885
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1073/pnas.93.21.11443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027844337
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1073/pnas.95.18.10356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049999505
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1073/pnas.96.20.11075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039326220
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1073/pnas.96.3.893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050716613
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1073/pnas.97.1.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026091760
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1074/jbc.274.23.15967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001168089
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.64.2094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800463
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevlett.79.1949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060815809
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1126/science.273.5277.933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553885
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/science.279.5354.1190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062559675
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1126/science.282.5395.1877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000423581
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1126/science.283.5409.1892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019756894
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1126/science.7973650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062650774
195 rdf:type schema:CreativeWork
196 https://doi.org/10.3109/09687689509038512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009274196
197 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...