CHORAL — A One Step Method as Numerical Low Pass Filter in Electrical Network Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001

AUTHORS

M. Günther , P. Rentrop , U. Feldmann

ABSTRACT

Circuit simulation packages generate the network equations automatically. In time domain analysis this results in a system of differential-algebraic equations, which is solved numerically by BDF schemes and/or the trapezoidal rule. CHORAL, a charge-oriented Rosenbrock-Wanner method, has been developed as an alternative approach for digital circuits. By its successful implementation into TITAN, Infineon Technologies’ circuit simulator, a second integration scheme is available for the first time. Results for benchmarks and industrial circuits show that CHORAL is competitive with the standard ansatz. A careful analysis shows that CHORAL can be interpreted as a numerical (non-ideal) low pass filter with all its beneficial properties: oscillations of physical significance are preserved, but highly oscillatory perturbations are damped out very rapidly. More... »

PAGES

199-215

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-56470-3_20

DOI

http://dx.doi.org/10.1007/978-3-642-56470-3_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047781072


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universit\u00e4t Karlsruhe (TH), Fachbereich Mathematik, Institut f\u00fcr Wissenschaftliches Rechnen und Mathematische Modellbildung (IWRMM), Engesserstr. 6, D-76128, Karlsruhe", 
          "id": "http://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Universit\u00e4t Karlsruhe (TH), Fachbereich Mathematik, Institut f\u00fcr Wissenschaftliches Rechnen und Mathematische Modellbildung (IWRMM), Engesserstr. 6, D-76128, Karlsruhe"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00fcnther", 
        "givenName": "M.", 
        "id": "sg:person.015305627377.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015305627377.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e4t Karlsruhe (TH), Fachbereich Mathematik, Institut f\u00fcr Wissenschaftliches Rechnen und Mathematische Modellbildung (IWRMM), Engesserstr. 6, D-76128, Karlsruhe", 
          "id": "http://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Universit\u00e4t Karlsruhe (TH), Fachbereich Mathematik, Institut f\u00fcr Wissenschaftliches Rechnen und Mathematische Modellbildung (IWRMM), Engesserstr. 6, D-76128, Karlsruhe"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rentrop", 
        "givenName": "P.", 
        "id": "sg:person.014032223761.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014032223761.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Infineon Technologies, Otto-Hahn-Ring 6, D-81739, M\u00fcnchen", 
          "id": "http://www.grid.ac/institutes/grid.410337.2", 
          "name": [
            "Infineon Technologies, Otto-Hahn-Ring 6, D-81739, M\u00fcnchen"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feldmann", 
        "givenName": "U.", 
        "id": "sg:person.010662756515.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010662756515.87"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "Circuit simulation packages generate the network equations automatically. In time domain analysis this results in a system of differential-algebraic equations, which is solved numerically by BDF schemes and/or the trapezoidal rule. CHORAL, a charge-oriented Rosenbrock-Wanner method, has been developed as an alternative approach for digital circuits. By its successful implementation into TITAN, Infineon Technologies\u2019 circuit simulator, a second integration scheme is available for the first time. Results for benchmarks and industrial circuits show that CHORAL is competitive with the standard ansatz. A careful analysis shows that CHORAL can be interpreted as a numerical (non-ideal) low pass filter with all its beneficial properties: oscillations of physical significance are preserved, but highly oscillatory perturbations are damped out very rapidly.", 
    "editor": [
      {
        "familyName": "van Rienen", 
        "givenName": "Ursula", 
        "type": "Person"
      }, 
      {
        "familyName": "G\u00fcnther", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "familyName": "Hecht", 
        "givenName": "Dirk", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-56470-3_20", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-42173-3", 
        "978-3-642-56470-3"
      ], 
      "name": "Scientific Computing in Electrical Engineering", 
      "type": "Book"
    }, 
    "keywords": [
      "low-pass filter", 
      "numerical low-pass filter", 
      "differential-algebraic equations", 
      "Rosenbrock\u2013Wanner methods", 
      "pass filter", 
      "network equations", 
      "circuit simulation package", 
      "BDF scheme", 
      "standard ansatz", 
      "electrical network analysis", 
      "trapezoidal rule", 
      "integration scheme", 
      "physical significance", 
      "time domain analysis", 
      "Infineon Technologies", 
      "oscillatory perturbations", 
      "circuit simulator", 
      "equations", 
      "simulation package", 
      "step method", 
      "digital circuits", 
      "domain analysis", 
      "scheme", 
      "ansatz", 
      "filter", 
      "circuit", 
      "careful analysis", 
      "industrial circuits", 
      "alternative approach", 
      "perturbations", 
      "oscillations", 
      "simulator", 
      "beneficial properties", 
      "method", 
      "properties", 
      "technology", 
      "first time", 
      "network analysis", 
      "benchmarks", 
      "package", 
      "successful implementation", 
      "approach", 
      "system", 
      "analysis", 
      "rules", 
      "implementation", 
      "results", 
      "time", 
      "Titan", 
      "Choral", 
      "significance"
    ], 
    "name": "CHORAL \u2014 A One Step Method as Numerical Low Pass Filter in Electrical Network Analysis", 
    "pagination": "199-215", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047781072"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-56470-3_20"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-56470-3_20", 
      "https://app.dimensions.ai/details/publication/pub.1047781072"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_367.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-56470-3_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-56470-3_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-56470-3_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-56470-3_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-56470-3_20'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      22 PREDICATES      76 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-56470-3_20 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N7724145b219c49df907b72cc5a7ed0d8
4 schema:datePublished 2001
5 schema:datePublishedReg 2001-01-01
6 schema:description Circuit simulation packages generate the network equations automatically. In time domain analysis this results in a system of differential-algebraic equations, which is solved numerically by BDF schemes and/or the trapezoidal rule. CHORAL, a charge-oriented Rosenbrock-Wanner method, has been developed as an alternative approach for digital circuits. By its successful implementation into TITAN, Infineon Technologies’ circuit simulator, a second integration scheme is available for the first time. Results for benchmarks and industrial circuits show that CHORAL is competitive with the standard ansatz. A careful analysis shows that CHORAL can be interpreted as a numerical (non-ideal) low pass filter with all its beneficial properties: oscillations of physical significance are preserved, but highly oscillatory perturbations are damped out very rapidly.
7 schema:editor N32eaedd0287f4a9a993efecb3bd98d8d
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nca632522fcc04371a7b92a6616a629f2
11 schema:keywords BDF scheme
12 Choral
13 Infineon Technologies
14 Rosenbrock–Wanner methods
15 Titan
16 alternative approach
17 analysis
18 ansatz
19 approach
20 benchmarks
21 beneficial properties
22 careful analysis
23 circuit
24 circuit simulation package
25 circuit simulator
26 differential-algebraic equations
27 digital circuits
28 domain analysis
29 electrical network analysis
30 equations
31 filter
32 first time
33 implementation
34 industrial circuits
35 integration scheme
36 low-pass filter
37 method
38 network analysis
39 network equations
40 numerical low-pass filter
41 oscillations
42 oscillatory perturbations
43 package
44 pass filter
45 perturbations
46 physical significance
47 properties
48 results
49 rules
50 scheme
51 significance
52 simulation package
53 simulator
54 standard ansatz
55 step method
56 successful implementation
57 system
58 technology
59 time
60 time domain analysis
61 trapezoidal rule
62 schema:name CHORAL — A One Step Method as Numerical Low Pass Filter in Electrical Network Analysis
63 schema:pagination 199-215
64 schema:productId N800633339e0943f8b56d6221941c4c31
65 N8374c3650ea34559a492420477d66c3b
66 schema:publisher Nd127e7cec5374da7bf197cce055dba27
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047781072
68 https://doi.org/10.1007/978-3-642-56470-3_20
69 schema:sdDatePublished 2022-09-02T16:16
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N5ea44a9f9d1c4f07bab62c7951979ed4
72 schema:url https://doi.org/10.1007/978-3-642-56470-3_20
73 sgo:license sg:explorer/license/
74 sgo:sdDataset chapters
75 rdf:type schema:Chapter
76 N2a59d2ef3e344114b3b0f57da3b5994f rdf:first sg:person.014032223761.67
77 rdf:rest Nf628f99e317c4abb8bbcca24d1674a05
78 N32eaedd0287f4a9a993efecb3bd98d8d rdf:first Nc881f3d34117400aa740c4509a1848b2
79 rdf:rest Ncc9b256872474bffa039d6a48c8516aa
80 N37d6d35d94314f26b880a62ea46e2ce4 rdf:first N89629f87367b4eb6a6ed7bfad83b8b67
81 rdf:rest rdf:nil
82 N5ea44a9f9d1c4f07bab62c7951979ed4 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N7724145b219c49df907b72cc5a7ed0d8 rdf:first sg:person.015305627377.46
85 rdf:rest N2a59d2ef3e344114b3b0f57da3b5994f
86 N800633339e0943f8b56d6221941c4c31 schema:name doi
87 schema:value 10.1007/978-3-642-56470-3_20
88 rdf:type schema:PropertyValue
89 N8374c3650ea34559a492420477d66c3b schema:name dimensions_id
90 schema:value pub.1047781072
91 rdf:type schema:PropertyValue
92 N89629f87367b4eb6a6ed7bfad83b8b67 schema:familyName Hecht
93 schema:givenName Dirk
94 rdf:type schema:Person
95 Nb02adc34313b418a8daf47cf179d7c07 schema:familyName Günther
96 schema:givenName Michael
97 rdf:type schema:Person
98 Nc881f3d34117400aa740c4509a1848b2 schema:familyName van Rienen
99 schema:givenName Ursula
100 rdf:type schema:Person
101 Nca632522fcc04371a7b92a6616a629f2 schema:isbn 978-3-540-42173-3
102 978-3-642-56470-3
103 schema:name Scientific Computing in Electrical Engineering
104 rdf:type schema:Book
105 Ncc9b256872474bffa039d6a48c8516aa rdf:first Nb02adc34313b418a8daf47cf179d7c07
106 rdf:rest N37d6d35d94314f26b880a62ea46e2ce4
107 Nd127e7cec5374da7bf197cce055dba27 schema:name Springer Nature
108 rdf:type schema:Organisation
109 Nf628f99e317c4abb8bbcca24d1674a05 rdf:first sg:person.010662756515.87
110 rdf:rest rdf:nil
111 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
112 schema:name Information and Computing Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
115 schema:name Artificial Intelligence and Image Processing
116 rdf:type schema:DefinedTerm
117 sg:person.010662756515.87 schema:affiliation grid-institutes:grid.410337.2
118 schema:familyName Feldmann
119 schema:givenName U.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010662756515.87
121 rdf:type schema:Person
122 sg:person.014032223761.67 schema:affiliation grid-institutes:grid.7892.4
123 schema:familyName Rentrop
124 schema:givenName P.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014032223761.67
126 rdf:type schema:Person
127 sg:person.015305627377.46 schema:affiliation grid-institutes:grid.7892.4
128 schema:familyName Günther
129 schema:givenName M.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015305627377.46
131 rdf:type schema:Person
132 grid-institutes:grid.410337.2 schema:alternateName Infineon Technologies, Otto-Hahn-Ring 6, D-81739, München
133 schema:name Infineon Technologies, Otto-Hahn-Ring 6, D-81739, München
134 rdf:type schema:Organization
135 grid-institutes:grid.7892.4 schema:alternateName Universität Karlsruhe (TH), Fachbereich Mathematik, Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung (IWRMM), Engesserstr. 6, D-76128, Karlsruhe
136 schema:name Universität Karlsruhe (TH), Fachbereich Mathematik, Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung (IWRMM), Engesserstr. 6, D-76128, Karlsruhe
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...