Transport Properties of the Half-Filled Landau Level in GaAs/AlGaAs Heterostructures: Temperature Dependence of Electrical Conductivity and Magnetoresistance of Composite Fermions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

R. Jahana , S. Kawaji , T. Okamoto , T. Fukase , T. Sakon , M. Motokawa

ABSTRACT

The fractional quantum Hall effect (FQHE) was discovered at the Landau level filling factor of ν=1/3 in two-dimensional electron systems of GaAs/AlGaAs heterostructures in 1982 by Tsui, Stormer and Gossard [1]. For FQHE at ν=1/(2m+1), where m is an integer, Laughlin proposed trial states describing highly correlated quantum liquids, which provide a good description of FQHE at these filling factors [2]. Later on, higher quality heterostructures have experimentally made it possible to observe FQHE at ν=n/2mn+1) for integer n. Jain proposed an elegant explanation for FQHE at the filling factor ν=n/(2mn+1) by introducing new quasi-particles, called composite fermions (CFs) [3]. A CF is a composite particle comprising an electron and an even number, 2m, of flux quanta ø0=h/e. In this picture, the integer quantum Hall effect (IQHE) of the CFs with 2m flux quanta corresponds to FQHE at ν=n/(2mn+1) as follows. The inverse of the filling factor ν–1=2m+n–1 is given by the number of available flux quanta per electron. However, 2m flux quanta are already a part of the CFs. Therefore, in the CF picture, the number of available flux quanta, excluding the gauge flux which is a part of the CFs, is n–1 per CF. Thus the CF state at the filling factor n is equivalent, in a mean field sense, to the electron state at the filling factor ν=n/(2mn+1). Following a similar procedure, Halperin, Lee and Read [4] developed a theory for the state at exactly half filling. More... »

PAGES

181-190

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-56312-6_13

DOI

http://dx.doi.org/10.1007/978-3-642-56312-6_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008794031


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-8588, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.256169.f", 
          "name": [
            "Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-8588, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jahana", 
        "givenName": "R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-8588, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.256169.f", 
          "name": [
            "Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-8588, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawaji", 
        "givenName": "S.", 
        "id": "sg:person.015363511451.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015363511451.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-8588, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.256169.f", 
          "name": [
            "Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-8588, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okamoto", 
        "givenName": "T.", 
        "id": "sg:person.011666546431.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011666546431.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukase", 
        "givenName": "T.", 
        "id": "sg:person.011154136466.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011154136466.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakon", 
        "givenName": "T.", 
        "id": "sg:person.014701157115.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014701157115.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Materials Research High Field Laboratory for Superconducting Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980 8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Institute for Materials Research High Field Laboratory for Superconducting Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980 8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Motokawa", 
        "givenName": "M.", 
        "id": "sg:person.015564471015.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015564471015.54"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "The fractional quantum Hall effect (FQHE) was discovered at the Landau level filling factor of \u03bd=1/3 in two-dimensional electron systems of GaAs/AlGaAs heterostructures in 1982 by Tsui, Stormer and Gossard [1]. For FQHE at \u03bd=1/(2m+1), where m is an integer, Laughlin proposed trial states describing highly correlated quantum liquids, which provide a good description of FQHE at these filling factors [2]. Later on, higher quality heterostructures have experimentally made it possible to observe FQHE at \u03bd=n/2mn+1) for integer n. Jain proposed an elegant explanation for FQHE at the filling factor \u03bd=n/(2mn+1) by introducing new quasi-particles, called composite fermions (CFs) [3]. A CF is a composite particle comprising an electron and an even number, 2m, of flux quanta \u00f80=h/e. In this picture, the integer quantum Hall effect (IQHE) of the CFs with 2m flux quanta corresponds to FQHE at \u03bd=n/(2mn+1) as follows. The inverse of the filling factor \u03bd\u20131=2m+n\u20131 is given by the number of available flux quanta per electron. However, 2m flux quanta are already a part of the CFs. Therefore, in the CF picture, the number of available flux quanta, excluding the gauge flux which is a part of the CFs, is n\u20131 per CF. Thus the CF state at the filling factor n is equivalent, in a mean field sense, to the electron state at the filling factor \u03bd=n/(2mn+1). Following a similar procedure, Halperin, Lee and Read [4] developed a theory for the state at exactly half filling.", 
    "editor": [
      {
        "familyName": "Watanabe", 
        "givenName": "Kazuo", 
        "type": "Person"
      }, 
      {
        "familyName": "Motokawa", 
        "givenName": "Mitsuhiro", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-56312-6_13", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-62635-7", 
        "978-3-642-56312-6"
      ], 
      "name": "Materials Science in Static High Magnetic Fields", 
      "type": "Book"
    }, 
    "keywords": [
      "fractional quantum Hall effect", 
      "integer quantum Hall effect", 
      "GaAs/AlGaAs heterostructures", 
      "quantum Hall effect", 
      "filling factors \u03bd", 
      "composite fermions", 
      "flux quantum", 
      "factor \u03bd", 
      "Landau levels", 
      "AlGaAs heterostructures", 
      "Hall effect", 
      "two-dimensional electron system", 
      "high quality heterostructures", 
      "correlated quantum liquids", 
      "quantum liquids", 
      "electron states", 
      "electron systems", 
      "CF picture", 
      "quantum", 
      "mean field sense", 
      "heterostructures", 
      "CF states", 
      "trial state", 
      "electrons", 
      "gauge flux", 
      "transport properties", 
      "elegant explanation", 
      "fermions", 
      "good description", 
      "temperature dependence", 
      "composite particles", 
      "even number", 
      "Gossard", 
      "Laughlin", 
      "state", 
      "magnetoresistance", 
      "\u00f80", 
      "Stormer", 
      "particles", 
      "electrical conductivity", 
      "Halperin", 
      "dependence", 
      "factor n", 
      "flux", 
      "picture", 
      "Tsui", 
      "liquid", 
      "theory", 
      "conductivity", 
      "properties", 
      "corresponds", 
      "Jain", 
      "description", 
      "effect", 
      "inverse", 
      "explanation", 
      "similar procedure", 
      "system", 
      "number", 
      "part", 
      "Lee", 
      "N-1", 
      "integers", 
      "levels", 
      "factors", 
      "half", 
      "procedure", 
      "sense", 
      "reads", 
      "quality heterostructures", 
      "flux quanta \u00f80", 
      "quanta \u00f80", 
      "flux quanta corresponds", 
      "quanta corresponds", 
      "available flux quanta", 
      "filling factor n", 
      "field sense"
    ], 
    "name": "Transport Properties of the Half-Filled Landau Level in GaAs/AlGaAs Heterostructures: Temperature Dependence of Electrical Conductivity and Magnetoresistance of Composite Fermions", 
    "pagination": "181-190", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008794031"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-56312-6_13"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-56312-6_13", 
      "https://app.dimensions.ai/details/publication/pub.1008794031"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_309.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-56312-6_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-56312-6_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-56312-6_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-56312-6_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-56312-6_13'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      23 PREDICATES      103 URIs      96 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-56312-6_13 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N5e1ca135c0ee4c28b906a1541092769b
4 schema:datePublished 2002
5 schema:datePublishedReg 2002-01-01
6 schema:description The fractional quantum Hall effect (FQHE) was discovered at the Landau level filling factor of ν=1/3 in two-dimensional electron systems of GaAs/AlGaAs heterostructures in 1982 by Tsui, Stormer and Gossard [1]. For FQHE at ν=1/(2m+1), where m is an integer, Laughlin proposed trial states describing highly correlated quantum liquids, which provide a good description of FQHE at these filling factors [2]. Later on, higher quality heterostructures have experimentally made it possible to observe FQHE at ν=n/2mn+1) for integer n. Jain proposed an elegant explanation for FQHE at the filling factor ν=n/(2mn+1) by introducing new quasi-particles, called composite fermions (CFs) [3]. A CF is a composite particle comprising an electron and an even number, 2m, of flux quanta ø0=h/e. In this picture, the integer quantum Hall effect (IQHE) of the CFs with 2m flux quanta corresponds to FQHE at ν=n/(2mn+1) as follows. The inverse of the filling factor ν–1=2m+n–1 is given by the number of available flux quanta per electron. However, 2m flux quanta are already a part of the CFs. Therefore, in the CF picture, the number of available flux quanta, excluding the gauge flux which is a part of the CFs, is n–1 per CF. Thus the CF state at the filling factor n is equivalent, in a mean field sense, to the electron state at the filling factor ν=n/(2mn+1). Following a similar procedure, Halperin, Lee and Read [4] developed a theory for the state at exactly half filling.
7 schema:editor Nc47b5fee719a490fb8bfa10ec2c44332
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N914dfccdc7b94b0bb57a5b3bdd1266bd
12 schema:keywords AlGaAs heterostructures
13 CF picture
14 CF states
15 GaAs/AlGaAs heterostructures
16 Gossard
17 Hall effect
18 Halperin
19 Jain
20 Landau levels
21 Laughlin
22 Lee
23 N-1
24 Stormer
25 Tsui
26 available flux quanta
27 composite fermions
28 composite particles
29 conductivity
30 correlated quantum liquids
31 corresponds
32 dependence
33 description
34 effect
35 electrical conductivity
36 electron states
37 electron systems
38 electrons
39 elegant explanation
40 even number
41 explanation
42 factor n
43 factor ν
44 factors
45 fermions
46 field sense
47 filling factor n
48 filling factors ν
49 flux
50 flux quanta corresponds
51 flux quanta ø0
52 flux quantum
53 fractional quantum Hall effect
54 gauge flux
55 good description
56 half
57 heterostructures
58 high quality heterostructures
59 integer quantum Hall effect
60 integers
61 inverse
62 levels
63 liquid
64 magnetoresistance
65 mean field sense
66 number
67 part
68 particles
69 picture
70 procedure
71 properties
72 quality heterostructures
73 quanta corresponds
74 quanta ø0
75 quantum
76 quantum Hall effect
77 quantum liquids
78 reads
79 sense
80 similar procedure
81 state
82 system
83 temperature dependence
84 theory
85 transport properties
86 trial state
87 two-dimensional electron system
88 ø0
89 schema:name Transport Properties of the Half-Filled Landau Level in GaAs/AlGaAs Heterostructures: Temperature Dependence of Electrical Conductivity and Magnetoresistance of Composite Fermions
90 schema:pagination 181-190
91 schema:productId N50d8e0d4b8a8455c83a9c63ab26dd0bd
92 Nf629af905aed4553aee9bc71ace01711
93 schema:publisher N99510aa2475547dd9e143d7bd78be005
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008794031
95 https://doi.org/10.1007/978-3-642-56312-6_13
96 schema:sdDatePublished 2021-12-01T20:05
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher Nad676ecd45e5435d9a1622a50dba5ce7
99 schema:url https://doi.org/10.1007/978-3-642-56312-6_13
100 sgo:license sg:explorer/license/
101 sgo:sdDataset chapters
102 rdf:type schema:Chapter
103 N1a467ebf980f4cb5a582bf17956365af rdf:first sg:person.015363511451.22
104 rdf:rest N372e8ba2e2b84fbc8f4f72119f4f05bc
105 N34e4b530edda4714b251c3804ab82ba5 rdf:first sg:person.014701157115.31
106 rdf:rest N66a037afe7a8465e85ce2277d5cc4458
107 N372e8ba2e2b84fbc8f4f72119f4f05bc rdf:first sg:person.011666546431.80
108 rdf:rest Ndde62ef5f0974d319a050c60beda03b6
109 N50d8e0d4b8a8455c83a9c63ab26dd0bd schema:name dimensions_id
110 schema:value pub.1008794031
111 rdf:type schema:PropertyValue
112 N5e1ca135c0ee4c28b906a1541092769b rdf:first Nbfc689e24e3a4c30bac0d2d84428028c
113 rdf:rest N1a467ebf980f4cb5a582bf17956365af
114 N66a037afe7a8465e85ce2277d5cc4458 rdf:first sg:person.015564471015.54
115 rdf:rest rdf:nil
116 N914dfccdc7b94b0bb57a5b3bdd1266bd schema:isbn 978-3-642-56312-6
117 978-3-642-62635-7
118 schema:name Materials Science in Static High Magnetic Fields
119 rdf:type schema:Book
120 N919b4e6db027414398a029d6c52f2ed0 rdf:first N9908c3753ce840e6ac69c14e423c9314
121 rdf:rest rdf:nil
122 N9908c3753ce840e6ac69c14e423c9314 schema:familyName Motokawa
123 schema:givenName Mitsuhiro
124 rdf:type schema:Person
125 N99510aa2475547dd9e143d7bd78be005 schema:name Springer Nature
126 rdf:type schema:Organisation
127 Nad676ecd45e5435d9a1622a50dba5ce7 schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 Nbfc689e24e3a4c30bac0d2d84428028c schema:affiliation grid-institutes:grid.256169.f
130 schema:familyName Jahana
131 schema:givenName R.
132 rdf:type schema:Person
133 Nc47b5fee719a490fb8bfa10ec2c44332 rdf:first Ncac1bf3b3a954ac09690126f93a6835e
134 rdf:rest N919b4e6db027414398a029d6c52f2ed0
135 Ncac1bf3b3a954ac09690126f93a6835e schema:familyName Watanabe
136 schema:givenName Kazuo
137 rdf:type schema:Person
138 Ndde62ef5f0974d319a050c60beda03b6 rdf:first sg:person.011154136466.04
139 rdf:rest N34e4b530edda4714b251c3804ab82ba5
140 Nf629af905aed4553aee9bc71ace01711 schema:name doi
141 schema:value 10.1007/978-3-642-56312-6_13
142 rdf:type schema:PropertyValue
143 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
144 schema:name Engineering
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
147 schema:name Materials Engineering
148 rdf:type schema:DefinedTerm
149 sg:person.011154136466.04 schema:affiliation grid-institutes:grid.69566.3a
150 schema:familyName Fukase
151 schema:givenName T.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011154136466.04
153 rdf:type schema:Person
154 sg:person.011666546431.80 schema:affiliation grid-institutes:grid.256169.f
155 schema:familyName Okamoto
156 schema:givenName T.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011666546431.80
158 rdf:type schema:Person
159 sg:person.014701157115.31 schema:affiliation grid-institutes:grid.69566.3a
160 schema:familyName Sakon
161 schema:givenName T.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014701157115.31
163 rdf:type schema:Person
164 sg:person.015363511451.22 schema:affiliation grid-institutes:grid.256169.f
165 schema:familyName Kawaji
166 schema:givenName S.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015363511451.22
168 rdf:type schema:Person
169 sg:person.015564471015.54 schema:affiliation grid-institutes:grid.69566.3a
170 schema:familyName Motokawa
171 schema:givenName M.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015564471015.54
173 rdf:type schema:Person
174 grid-institutes:grid.256169.f schema:alternateName Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-8588, Tokyo, Japan
175 schema:name Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-8588, Tokyo, Japan
176 rdf:type schema:Organization
177 grid-institutes:grid.69566.3a schema:alternateName Institute for Materials Research High Field Laboratory for Superconducting Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980 8577, Sendai, Japan
178 Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577, Sendai, Japan
179 schema:name Institute for Materials Research High Field Laboratory for Superconducting Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980 8577, Sendai, Japan
180 Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577, Sendai, Japan
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...