Bayesian Latent Class Metric Conjoint Analysis — A Case Study from the Austrian Mineral Water Market View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2003

AUTHORS

Th. Otter , R. Tüchler , S. Frühwirth-Schnatter

ABSTRACT

This paper presents the fully Bayesian analysis of the latent class model using a new approach towards MCMC estimation in the context of mixture models. The approach starts with estimating unidentified models for various numbers of classes. Exact Bayes’ factors are computed by the bridge sampling estimator to compare different models and select the number of classes. Estimation of the unidentified model is carried out using the random permutation sampler. From the unidentified model estimates for model parameters that are not class specific are derived. Then, the exploration of the MCMC output from the unconstrained model yields suitable identifiability constraints. Finally, the constrained version of the permutation sampler is used to estimate group specific parameters. Conjoint data from the Austrian mineral water market serve to illustrate the method. More... »

PAGES

157-169

References to SciGraph publications

Book

TITLE

Exploratory Data Analysis in Empirical Research

ISBN

978-3-540-44183-0
978-3-642-55721-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-55721-7_18

DOI

http://dx.doi.org/10.1007/978-3-642-55721-7_18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015170738


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Vienna University of Economics and Business", 
          "id": "https://www.grid.ac/institutes/grid.15788.33", 
          "name": [
            "Vienna University of Economics and Business Administration (WU-Wien), Augasse 2-6, A-1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Otter", 
        "givenName": "Th.", 
        "id": "sg:person.014303205442.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014303205442.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vienna University of Economics and Business", 
          "id": "https://www.grid.ac/institutes/grid.15788.33", 
          "name": [
            "Vienna University of Economics and Business Administration (WU-Wien), Augasse 2-6, A-1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "T\u00fcchler", 
        "givenName": "R.", 
        "id": "sg:person.011020151531.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011020151531.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vienna University of Economics and Business", 
          "id": "https://www.grid.ac/institutes/grid.15788.33", 
          "name": [
            "Vienna University of Economics and Business Administration (WU-Wien), Augasse 2-6, A-1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fr\u00fchwirth-Schnatter", 
        "givenName": "S.", 
        "id": "sg:person.0702362777.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702362777.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02294188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021242048", 
          "https://doi.org/10.1007/bf02294188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021242048", 
          "https://doi.org/10.1007/bf02294188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214501750333063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3152035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070214252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1103194915", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "This paper presents the fully Bayesian analysis of the latent class model using a new approach towards MCMC estimation in the context of mixture models. The approach starts with estimating unidentified models for various numbers of classes. Exact Bayes\u2019 factors are computed by the bridge sampling estimator to compare different models and select the number of classes. Estimation of the unidentified model is carried out using the random permutation sampler. From the unidentified model estimates for model parameters that are not class specific are derived. Then, the exploration of the MCMC output from the unconstrained model yields suitable identifiability constraints. Finally, the constrained version of the permutation sampler is used to estimate group specific parameters. Conjoint data from the Austrian mineral water market serve to illustrate the method.", 
    "editor": [
      {
        "familyName": "Schwaiger", 
        "givenName": "Manfred", 
        "type": "Person"
      }, 
      {
        "familyName": "Opitz", 
        "givenName": "Otto", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-55721-7_18", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-44183-0", 
        "978-3-642-55721-7"
      ], 
      "name": "Exploratory Data Analysis in Empirical Research", 
      "type": "Book"
    }, 
    "name": "Bayesian Latent Class Metric Conjoint Analysis \u2014 A Case Study from the Austrian Mineral Water Market", 
    "pagination": "157-169", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015170738"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-55721-7_18"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "48475e2837682e3a51da8c3a4e0172cd68589836a96bd7fa9b6149f0b1811fb5"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-55721-7_18", 
      "https://app.dimensions.ai/details/publication/pub.1015170738"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46772_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-55721-7_18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-55721-7_18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-55721-7_18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-55721-7_18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-55721-7_18'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-55721-7_18 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nf5c88ac821e444598fec20806f27e7ec
4 schema:citation sg:pub.10.1007/bf02294188
5 https://app.dimensions.ai/details/publication/pub.1103194915
6 https://doi.org/10.1198/016214501750333063
7 https://doi.org/10.2307/3152035
8 schema:datePublished 2003
9 schema:datePublishedReg 2003-01-01
10 schema:description This paper presents the fully Bayesian analysis of the latent class model using a new approach towards MCMC estimation in the context of mixture models. The approach starts with estimating unidentified models for various numbers of classes. Exact Bayes’ factors are computed by the bridge sampling estimator to compare different models and select the number of classes. Estimation of the unidentified model is carried out using the random permutation sampler. From the unidentified model estimates for model parameters that are not class specific are derived. Then, the exploration of the MCMC output from the unconstrained model yields suitable identifiability constraints. Finally, the constrained version of the permutation sampler is used to estimate group specific parameters. Conjoint data from the Austrian mineral water market serve to illustrate the method.
11 schema:editor N25c8c5ce02e14e3a9a5541200149a423
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N1c7db9982fe141fb82b63c7562a77119
16 schema:name Bayesian Latent Class Metric Conjoint Analysis — A Case Study from the Austrian Mineral Water Market
17 schema:pagination 157-169
18 schema:productId N0afebc86929243df83059eba63252d29
19 N8f2e670b0d014b4ebabb1435b8058ca6
20 Nb5752321848d44febe66b7ca3746e1a4
21 schema:publisher N231b66e4a7d74324aa47be4e11bc22d7
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015170738
23 https://doi.org/10.1007/978-3-642-55721-7_18
24 schema:sdDatePublished 2019-04-16T09:06
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N1d1a09f714c24569b4c3bb3843a12818
27 schema:url https://link.springer.com/10.1007%2F978-3-642-55721-7_18
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N0afebc86929243df83059eba63252d29 schema:name doi
32 schema:value 10.1007/978-3-642-55721-7_18
33 rdf:type schema:PropertyValue
34 N1c7db9982fe141fb82b63c7562a77119 schema:isbn 978-3-540-44183-0
35 978-3-642-55721-7
36 schema:name Exploratory Data Analysis in Empirical Research
37 rdf:type schema:Book
38 N1d1a09f714c24569b4c3bb3843a12818 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N231b66e4a7d74324aa47be4e11bc22d7 schema:location Berlin, Heidelberg
41 schema:name Springer Berlin Heidelberg
42 rdf:type schema:Organisation
43 N25c8c5ce02e14e3a9a5541200149a423 rdf:first N29c7061e81ce4040a91a2feae0b67fae
44 rdf:rest N948f0892091445b4bd9c18dd79225bc5
45 N29c7061e81ce4040a91a2feae0b67fae schema:familyName Schwaiger
46 schema:givenName Manfred
47 rdf:type schema:Person
48 N65a9176498404978b51428415019c86f schema:familyName Opitz
49 schema:givenName Otto
50 rdf:type schema:Person
51 N74c107ccbe15432ab0ed39a55a188038 rdf:first sg:person.0702362777.46
52 rdf:rest rdf:nil
53 N823935cac10b4ef4ae8fc354fb2b833f rdf:first sg:person.011020151531.52
54 rdf:rest N74c107ccbe15432ab0ed39a55a188038
55 N8f2e670b0d014b4ebabb1435b8058ca6 schema:name dimensions_id
56 schema:value pub.1015170738
57 rdf:type schema:PropertyValue
58 N948f0892091445b4bd9c18dd79225bc5 rdf:first N65a9176498404978b51428415019c86f
59 rdf:rest rdf:nil
60 Nb5752321848d44febe66b7ca3746e1a4 schema:name readcube_id
61 schema:value 48475e2837682e3a51da8c3a4e0172cd68589836a96bd7fa9b6149f0b1811fb5
62 rdf:type schema:PropertyValue
63 Nf5c88ac821e444598fec20806f27e7ec rdf:first sg:person.014303205442.04
64 rdf:rest N823935cac10b4ef4ae8fc354fb2b833f
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
69 schema:name Statistics
70 rdf:type schema:DefinedTerm
71 sg:person.011020151531.52 schema:affiliation https://www.grid.ac/institutes/grid.15788.33
72 schema:familyName Tüchler
73 schema:givenName R.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011020151531.52
75 rdf:type schema:Person
76 sg:person.014303205442.04 schema:affiliation https://www.grid.ac/institutes/grid.15788.33
77 schema:familyName Otter
78 schema:givenName Th.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014303205442.04
80 rdf:type schema:Person
81 sg:person.0702362777.46 schema:affiliation https://www.grid.ac/institutes/grid.15788.33
82 schema:familyName Frühwirth-Schnatter
83 schema:givenName S.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702362777.46
85 rdf:type schema:Person
86 sg:pub.10.1007/bf02294188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021242048
87 https://doi.org/10.1007/bf02294188
88 rdf:type schema:CreativeWork
89 https://app.dimensions.ai/details/publication/pub.1103194915 schema:CreativeWork
90 https://doi.org/10.1198/016214501750333063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197824
91 rdf:type schema:CreativeWork
92 https://doi.org/10.2307/3152035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070214252
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.15788.33 schema:alternateName Vienna University of Economics and Business
95 schema:name Vienna University of Economics and Business Administration (WU-Wien), Augasse 2-6, A-1090, Vienna, Austria
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...