Bayesian Latent Class Metric Conjoint Analysis — A Case Study from the Austrian Mineral Water Market View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2003

AUTHORS

Th. Otter , R. Tüchler , S. Frühwirth-Schnatter

ABSTRACT

This paper presents the fully Bayesian analysis of the latent class model using a new approach towards MCMC estimation in the context of mixture models. The approach starts with estimating unidentified models for various numbers of classes. Exact Bayes’ factors are computed by the bridge sampling estimator to compare different models and select the number of classes. Estimation of the unidentified model is carried out using the random permutation sampler. From the unidentified model estimates for model parameters that are not class specific are derived. Then, the exploration of the MCMC output from the unconstrained model yields suitable identifiability constraints. Finally, the constrained version of the permutation sampler is used to estimate group specific parameters. Conjoint data from the Austrian mineral water market serve to illustrate the method. More... »

PAGES

157-169

References to SciGraph publications

Book

TITLE

Exploratory Data Analysis in Empirical Research

ISBN

978-3-540-44183-0
978-3-642-55721-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-55721-7_18

DOI

http://dx.doi.org/10.1007/978-3-642-55721-7_18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015170738


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Vienna University of Economics and Business", 
          "id": "https://www.grid.ac/institutes/grid.15788.33", 
          "name": [
            "Vienna University of Economics and Business Administration (WU-Wien), Augasse 2-6, A-1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Otter", 
        "givenName": "Th.", 
        "id": "sg:person.014303205442.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014303205442.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vienna University of Economics and Business", 
          "id": "https://www.grid.ac/institutes/grid.15788.33", 
          "name": [
            "Vienna University of Economics and Business Administration (WU-Wien), Augasse 2-6, A-1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "T\u00fcchler", 
        "givenName": "R.", 
        "id": "sg:person.011020151531.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011020151531.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vienna University of Economics and Business", 
          "id": "https://www.grid.ac/institutes/grid.15788.33", 
          "name": [
            "Vienna University of Economics and Business Administration (WU-Wien), Augasse 2-6, A-1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fr\u00fchwirth-Schnatter", 
        "givenName": "S.", 
        "id": "sg:person.0702362777.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702362777.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02294188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021242048", 
          "https://doi.org/10.1007/bf02294188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021242048", 
          "https://doi.org/10.1007/bf02294188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214501750333063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3152035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070214252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1103194915", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "This paper presents the fully Bayesian analysis of the latent class model using a new approach towards MCMC estimation in the context of mixture models. The approach starts with estimating unidentified models for various numbers of classes. Exact Bayes\u2019 factors are computed by the bridge sampling estimator to compare different models and select the number of classes. Estimation of the unidentified model is carried out using the random permutation sampler. From the unidentified model estimates for model parameters that are not class specific are derived. Then, the exploration of the MCMC output from the unconstrained model yields suitable identifiability constraints. Finally, the constrained version of the permutation sampler is used to estimate group specific parameters. Conjoint data from the Austrian mineral water market serve to illustrate the method.", 
    "editor": [
      {
        "familyName": "Schwaiger", 
        "givenName": "Manfred", 
        "type": "Person"
      }, 
      {
        "familyName": "Opitz", 
        "givenName": "Otto", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-55721-7_18", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-44183-0", 
        "978-3-642-55721-7"
      ], 
      "name": "Exploratory Data Analysis in Empirical Research", 
      "type": "Book"
    }, 
    "name": "Bayesian Latent Class Metric Conjoint Analysis \u2014 A Case Study from the Austrian Mineral Water Market", 
    "pagination": "157-169", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015170738"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-55721-7_18"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "48475e2837682e3a51da8c3a4e0172cd68589836a96bd7fa9b6149f0b1811fb5"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-55721-7_18", 
      "https://app.dimensions.ai/details/publication/pub.1015170738"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46772_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-55721-7_18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-55721-7_18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-55721-7_18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-55721-7_18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-55721-7_18'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-55721-7_18 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N1ce3ec0ce50e47e3ac71c17d4faab418
4 schema:citation sg:pub.10.1007/bf02294188
5 https://app.dimensions.ai/details/publication/pub.1103194915
6 https://doi.org/10.1198/016214501750333063
7 https://doi.org/10.2307/3152035
8 schema:datePublished 2003
9 schema:datePublishedReg 2003-01-01
10 schema:description This paper presents the fully Bayesian analysis of the latent class model using a new approach towards MCMC estimation in the context of mixture models. The approach starts with estimating unidentified models for various numbers of classes. Exact Bayes’ factors are computed by the bridge sampling estimator to compare different models and select the number of classes. Estimation of the unidentified model is carried out using the random permutation sampler. From the unidentified model estimates for model parameters that are not class specific are derived. Then, the exploration of the MCMC output from the unconstrained model yields suitable identifiability constraints. Finally, the constrained version of the permutation sampler is used to estimate group specific parameters. Conjoint data from the Austrian mineral water market serve to illustrate the method.
11 schema:editor Ndfe7e5f685e34cc0a66e858f534a616a
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf Nbe4feafb24194d1b9518cca121da2f70
16 schema:name Bayesian Latent Class Metric Conjoint Analysis — A Case Study from the Austrian Mineral Water Market
17 schema:pagination 157-169
18 schema:productId N5bf85e111c30466a8c4c0873874494f3
19 N5d14b048becf421da78f2dfc47ad3086
20 N9b299d0aeba84a1cb6803553b1d972a6
21 schema:publisher N9e78ed44d99a489f98f797034fb1451a
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015170738
23 https://doi.org/10.1007/978-3-642-55721-7_18
24 schema:sdDatePublished 2019-04-16T09:06
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N116e10634bf64947898a48c96b0bd686
27 schema:url https://link.springer.com/10.1007%2F978-3-642-55721-7_18
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N116e10634bf64947898a48c96b0bd686 schema:name Springer Nature - SN SciGraph project
32 rdf:type schema:Organization
33 N1821fc2168b24829860f961df688c989 schema:familyName Schwaiger
34 schema:givenName Manfred
35 rdf:type schema:Person
36 N1856bc69cec0441fadff4327274bc150 rdf:first sg:person.0702362777.46
37 rdf:rest rdf:nil
38 N1ce3ec0ce50e47e3ac71c17d4faab418 rdf:first sg:person.014303205442.04
39 rdf:rest Nfb6be9dc02cd442f91738e1c9b26dd4d
40 N5bf85e111c30466a8c4c0873874494f3 schema:name doi
41 schema:value 10.1007/978-3-642-55721-7_18
42 rdf:type schema:PropertyValue
43 N5d14b048becf421da78f2dfc47ad3086 schema:name readcube_id
44 schema:value 48475e2837682e3a51da8c3a4e0172cd68589836a96bd7fa9b6149f0b1811fb5
45 rdf:type schema:PropertyValue
46 N9b299d0aeba84a1cb6803553b1d972a6 schema:name dimensions_id
47 schema:value pub.1015170738
48 rdf:type schema:PropertyValue
49 N9e78ed44d99a489f98f797034fb1451a schema:location Berlin, Heidelberg
50 schema:name Springer Berlin Heidelberg
51 rdf:type schema:Organisation
52 Nbe4feafb24194d1b9518cca121da2f70 schema:isbn 978-3-540-44183-0
53 978-3-642-55721-7
54 schema:name Exploratory Data Analysis in Empirical Research
55 rdf:type schema:Book
56 Nc5398b39c6b34ccba061dcf86d06b9f6 rdf:first Ndb5bb23ba64140a3b07ba83d64308f21
57 rdf:rest rdf:nil
58 Ndb5bb23ba64140a3b07ba83d64308f21 schema:familyName Opitz
59 schema:givenName Otto
60 rdf:type schema:Person
61 Ndfe7e5f685e34cc0a66e858f534a616a rdf:first N1821fc2168b24829860f961df688c989
62 rdf:rest Nc5398b39c6b34ccba061dcf86d06b9f6
63 Nfb6be9dc02cd442f91738e1c9b26dd4d rdf:first sg:person.011020151531.52
64 rdf:rest N1856bc69cec0441fadff4327274bc150
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
69 schema:name Statistics
70 rdf:type schema:DefinedTerm
71 sg:person.011020151531.52 schema:affiliation https://www.grid.ac/institutes/grid.15788.33
72 schema:familyName Tüchler
73 schema:givenName R.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011020151531.52
75 rdf:type schema:Person
76 sg:person.014303205442.04 schema:affiliation https://www.grid.ac/institutes/grid.15788.33
77 schema:familyName Otter
78 schema:givenName Th.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014303205442.04
80 rdf:type schema:Person
81 sg:person.0702362777.46 schema:affiliation https://www.grid.ac/institutes/grid.15788.33
82 schema:familyName Frühwirth-Schnatter
83 schema:givenName S.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702362777.46
85 rdf:type schema:Person
86 sg:pub.10.1007/bf02294188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021242048
87 https://doi.org/10.1007/bf02294188
88 rdf:type schema:CreativeWork
89 https://app.dimensions.ai/details/publication/pub.1103194915 schema:CreativeWork
90 https://doi.org/10.1198/016214501750333063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197824
91 rdf:type schema:CreativeWork
92 https://doi.org/10.2307/3152035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070214252
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.15788.33 schema:alternateName Vienna University of Economics and Business
95 schema:name Vienna University of Economics and Business Administration (WU-Wien), Augasse 2-6, A-1090, Vienna, Austria
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...