Bridging the Gap: From Cellular Automata to Differential Equation Models for Pedestrian Dynamics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014-05-08

AUTHORS

Felix Dietrich , Gerta Köster , Michael Seitz , Isabella von Sivers

ABSTRACT

Cellular automata (CA) and ordinary differential equation (ODE) based models compete for dominance in microscopic pedestrian dynamics. Both are inspired by the idea that pedestrians are subject to forces. However, there are two major differences: In a CA, movement is restricted to a coarse grid and navigation is achieved directly by pointing the movement in the direction of the forces. Force based ODE models operate in continuous space and navigation is computed indirectly through the acceleration vector. We present two models emanating from the CA and ODE approaches that remove these two differences: the Optimal Steps Model and the Gradient Navigation Model. Both models are very robust and produce trajectories similar to each other, bridging the gap between the older models. Both approaches are grid-free and free of oscillations, giving cause to the hypothesis that the two major differences are also the two major weaknesses of the older models. More... »

PAGES

659-668

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-55195-6_62

DOI

http://dx.doi.org/10.1007/978-3-642-55195-6_62

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051360778


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Munich, Boltzmannstr. 3, 85747, Garching, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Technical University of Munich, Boltzmannstr. 3, 85747, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dietrich", 
        "givenName": "Felix", 
        "id": "sg:person.011203007563.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011203007563.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Munich University of Applied Sciences, Lothstr. 64, 80335, M\u00fcnich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.434949.7", 
          "name": [
            "Munich University of Applied Sciences, Lothstr. 64, 80335, M\u00fcnich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u00f6ster", 
        "givenName": "Gerta", 
        "id": "sg:person.013373331163.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013373331163.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Munich University of Applied Sciences, Lothstr. 64, 80335, M\u00fcnich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.434949.7", 
          "name": [
            "Munich University of Applied Sciences, Lothstr. 64, 80335, M\u00fcnich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seitz", 
        "givenName": "Michael", 
        "id": "sg:person.013540646657.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013540646657.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Munich University of Applied Sciences, Lothstr. 64, 80335, M\u00fcnich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.434949.7", 
          "name": [
            "Munich University of Applied Sciences, Lothstr. 64, 80335, M\u00fcnich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "von Sivers", 
        "givenName": "Isabella", 
        "id": "sg:person.013507031101.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013507031101.13"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014-05-08", 
    "datePublishedReg": "2014-05-08", 
    "description": "Cellular automata (CA) and ordinary differential equation (ODE) based models compete for dominance in microscopic pedestrian dynamics. Both are inspired by the idea that pedestrians are subject to forces. However, there are two major differences: In a CA, movement is restricted to a coarse grid and navigation is achieved directly by pointing the movement in the direction of the forces. Force based ODE models operate in continuous space and navigation is computed indirectly through the acceleration vector. We present two models emanating from the CA and ODE approaches that remove these two differences: the Optimal Steps Model and the Gradient Navigation Model. Both models are very robust and produce trajectories similar to each other, bridging the gap between the older models. Both approaches are grid-free and free of oscillations, giving cause to the hypothesis that the two major differences are also the two major weaknesses of the older models.", 
    "editor": [
      {
        "familyName": "Wyrzykowski", 
        "givenName": "Roman", 
        "type": "Person"
      }, 
      {
        "familyName": "Dongarra", 
        "givenName": "Jack", 
        "type": "Person"
      }, 
      {
        "familyName": "Karczewski", 
        "givenName": "Konrad", 
        "type": "Person"
      }, 
      {
        "familyName": "Wa\u015bniewski", 
        "givenName": "Jerzy", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-55195-6_62", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-55194-9", 
        "978-3-642-55195-6"
      ], 
      "name": "Parallel Processing and Applied Mathematics", 
      "type": "Book"
    }, 
    "keywords": [
      "ordinary differential equations", 
      "Gradient Navigation Model", 
      "Optimal Steps Model", 
      "differential equation model", 
      "cellular automata", 
      "pedestrian dynamics", 
      "differential equations", 
      "ODE model", 
      "ODE approach", 
      "coarse grid", 
      "continuous space", 
      "equation model", 
      "acceleration vector", 
      "automata", 
      "dynamics", 
      "old model", 
      "equations", 
      "model", 
      "step model", 
      "approach", 
      "space", 
      "grid", 
      "trajectories", 
      "major weakness", 
      "oscillations", 
      "vector", 
      "idea", 
      "navigation model", 
      "force", 
      "pedestrians", 
      "direction", 
      "gap", 
      "navigation", 
      "movement", 
      "weakness", 
      "hypothesis", 
      "major differences", 
      "dominance", 
      "differences", 
      "cause", 
      "microscopic pedestrian dynamics"
    ], 
    "name": "Bridging the Gap: From Cellular Automata to Differential Equation Models for Pedestrian Dynamics", 
    "pagination": "659-668", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051360778"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-55195-6_62"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-55195-6_62", 
      "https://app.dimensions.ai/details/publication/pub.1051360778"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_262.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-55195-6_62"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-55195-6_62'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-55195-6_62'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-55195-6_62'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-55195-6_62'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      23 PREDICATES      66 URIs      59 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-55195-6_62 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N73591d866f3f4d788daa812c39ca70f8
4 schema:datePublished 2014-05-08
5 schema:datePublishedReg 2014-05-08
6 schema:description Cellular automata (CA) and ordinary differential equation (ODE) based models compete for dominance in microscopic pedestrian dynamics. Both are inspired by the idea that pedestrians are subject to forces. However, there are two major differences: In a CA, movement is restricted to a coarse grid and navigation is achieved directly by pointing the movement in the direction of the forces. Force based ODE models operate in continuous space and navigation is computed indirectly through the acceleration vector. We present two models emanating from the CA and ODE approaches that remove these two differences: the Optimal Steps Model and the Gradient Navigation Model. Both models are very robust and produce trajectories similar to each other, bridging the gap between the older models. Both approaches are grid-free and free of oscillations, giving cause to the hypothesis that the two major differences are also the two major weaknesses of the older models.
7 schema:editor Nd9d7f061feb741ed84b7864651b90c91
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N4b7de49d54d34a3b98ff33443aaaf6f9
12 schema:keywords Gradient Navigation Model
13 ODE approach
14 ODE model
15 Optimal Steps Model
16 acceleration vector
17 approach
18 automata
19 cause
20 cellular automata
21 coarse grid
22 continuous space
23 differences
24 differential equation model
25 differential equations
26 direction
27 dominance
28 dynamics
29 equation model
30 equations
31 force
32 gap
33 grid
34 hypothesis
35 idea
36 major differences
37 major weakness
38 microscopic pedestrian dynamics
39 model
40 movement
41 navigation
42 navigation model
43 old model
44 ordinary differential equations
45 oscillations
46 pedestrian dynamics
47 pedestrians
48 space
49 step model
50 trajectories
51 vector
52 weakness
53 schema:name Bridging the Gap: From Cellular Automata to Differential Equation Models for Pedestrian Dynamics
54 schema:pagination 659-668
55 schema:productId N289c34f0302e46ffa97d8f021a4d586e
56 Na34582def3f94fe9a7e3632adcbb5eaa
57 schema:publisher N9517b7dd660a435ca89f1d74ada617b5
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051360778
59 https://doi.org/10.1007/978-3-642-55195-6_62
60 schema:sdDatePublished 2021-12-01T20:02
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N6d3085c5dd9b419faac5a7846953c59d
63 schema:url https://doi.org/10.1007/978-3-642-55195-6_62
64 sgo:license sg:explorer/license/
65 sgo:sdDataset chapters
66 rdf:type schema:Chapter
67 N09e0fc50f4cd463386aedae07a924d03 rdf:first N315a51b87ec0428ea3e4e29d114ab659
68 rdf:rest Nd7da3eca57044434b8dc003b12698607
69 N289c34f0302e46ffa97d8f021a4d586e schema:name doi
70 schema:value 10.1007/978-3-642-55195-6_62
71 rdf:type schema:PropertyValue
72 N315a51b87ec0428ea3e4e29d114ab659 schema:familyName Karczewski
73 schema:givenName Konrad
74 rdf:type schema:Person
75 N3548092b809d4979a1bb18061475c7b9 rdf:first sg:person.013540646657.07
76 rdf:rest N783ac1c55922407a90b6917433f01430
77 N4b7de49d54d34a3b98ff33443aaaf6f9 schema:isbn 978-3-642-55194-9
78 978-3-642-55195-6
79 schema:name Parallel Processing and Applied Mathematics
80 rdf:type schema:Book
81 N4c2d67f822b64af7840c5f1fab7adb18 schema:familyName Waśniewski
82 schema:givenName Jerzy
83 rdf:type schema:Person
84 N545b0fadc7164c29a97d75e3322d0294 schema:familyName Dongarra
85 schema:givenName Jack
86 rdf:type schema:Person
87 N6d3085c5dd9b419faac5a7846953c59d schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N73591d866f3f4d788daa812c39ca70f8 rdf:first sg:person.011203007563.12
90 rdf:rest Nf8510b138d9040c29baa3ae9251dc7bc
91 N783ac1c55922407a90b6917433f01430 rdf:first sg:person.013507031101.13
92 rdf:rest rdf:nil
93 N9517b7dd660a435ca89f1d74ada617b5 schema:name Springer Nature
94 rdf:type schema:Organisation
95 N9cd4070b9c0b4900a17b58860f56a65d schema:familyName Wyrzykowski
96 schema:givenName Roman
97 rdf:type schema:Person
98 Na34582def3f94fe9a7e3632adcbb5eaa schema:name dimensions_id
99 schema:value pub.1051360778
100 rdf:type schema:PropertyValue
101 Na98d346017784a4a9afb261a985c79b1 rdf:first N545b0fadc7164c29a97d75e3322d0294
102 rdf:rest N09e0fc50f4cd463386aedae07a924d03
103 Nd7da3eca57044434b8dc003b12698607 rdf:first N4c2d67f822b64af7840c5f1fab7adb18
104 rdf:rest rdf:nil
105 Nd9d7f061feb741ed84b7864651b90c91 rdf:first N9cd4070b9c0b4900a17b58860f56a65d
106 rdf:rest Na98d346017784a4a9afb261a985c79b1
107 Nf8510b138d9040c29baa3ae9251dc7bc rdf:first sg:person.013373331163.32
108 rdf:rest N3548092b809d4979a1bb18061475c7b9
109 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
110 schema:name Mathematical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
113 schema:name Applied Mathematics
114 rdf:type schema:DefinedTerm
115 sg:person.011203007563.12 schema:affiliation grid-institutes:grid.6936.a
116 schema:familyName Dietrich
117 schema:givenName Felix
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011203007563.12
119 rdf:type schema:Person
120 sg:person.013373331163.32 schema:affiliation grid-institutes:grid.434949.7
121 schema:familyName Köster
122 schema:givenName Gerta
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013373331163.32
124 rdf:type schema:Person
125 sg:person.013507031101.13 schema:affiliation grid-institutes:grid.434949.7
126 schema:familyName von Sivers
127 schema:givenName Isabella
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013507031101.13
129 rdf:type schema:Person
130 sg:person.013540646657.07 schema:affiliation grid-institutes:grid.434949.7
131 schema:familyName Seitz
132 schema:givenName Michael
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013540646657.07
134 rdf:type schema:Person
135 grid-institutes:grid.434949.7 schema:alternateName Munich University of Applied Sciences, Lothstr. 64, 80335, Münich, Germany
136 schema:name Munich University of Applied Sciences, Lothstr. 64, 80335, Münich, Germany
137 rdf:type schema:Organization
138 grid-institutes:grid.6936.a schema:alternateName Technical University of Munich, Boltzmannstr. 3, 85747, Garching, Germany
139 schema:name Technical University of Munich, Boltzmannstr. 3, 85747, Garching, Germany
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...