Verifiable Oblivious Storage View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Daniel Apon , Jonathan Katz , Elaine Shi , Aishwarya Thiruvengadam

ABSTRACT

We formalize the notion of Verifiable Oblivious Storage (VOS), where a client outsources the storage of data to a server while ensuring data confidentiality, access pattern privacy, and integrity and freshness of data accesses. VOS generalizes the notion of Oblivious RAM (ORAM) in that it allows the server to perform computation, and also explicitly considers data integrity and freshness.We show that allowing server-side computation enables us to construct asymptotically more efficient VOS schemes whose bandwidth overhead cannot be matched by any ORAM scheme, due to a known lower bound by Goldreich and Ostrovsky. Specifically, for large block sizes we can construct a VOS scheme with constant bandwidth per query; further, answering queries requires only poly-logarithmic server computation. We describe applications of VOS to Dynamic Proofs of Retrievability, and RAM-model secure multi-party computation. More... »

PAGES

131-148

Book

TITLE

Public-Key Cryptography – PKC 2014

ISBN

978-3-642-54630-3
978-3-642-54631-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-54631-0_8

DOI

http://dx.doi.org/10.1007/978-3-642-54631-0_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031381253


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Maryland, 20742, College Park, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "University of Maryland, 20742, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Apon", 
        "givenName": "Daniel", 
        "id": "sg:person.011117107753.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011117107753.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, 20742, College Park, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "University of Maryland, 20742, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katz", 
        "givenName": "Jonathan", 
        "id": "sg:person.01354261156.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354261156.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, 20742, College Park, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "University of Maryland, 20742, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Elaine", 
        "id": "sg:person.014706274717.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014706274717.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, 20742, College Park, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "University of Maryland, 20742, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thiruvengadam", 
        "givenName": "Aishwarya", 
        "id": "sg:person.016103031076.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016103031076.19"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "We formalize the notion of Verifiable Oblivious Storage (VOS), where a client outsources the storage of data to a server while ensuring data confidentiality, access pattern privacy, and integrity and freshness of data accesses. VOS generalizes the notion of Oblivious RAM (ORAM) in that it allows the server to perform computation, and also explicitly considers data integrity and freshness.We show that allowing server-side computation enables us to construct asymptotically more efficient VOS schemes whose bandwidth overhead cannot be matched by any ORAM scheme, due to a known lower bound by Goldreich and Ostrovsky. Specifically, for large block sizes we can construct a VOS scheme with constant bandwidth per query; further, answering queries requires only poly-logarithmic server computation. We describe applications of VOS to Dynamic Proofs of Retrievability, and RAM-model secure multi-party computation.", 
    "editor": [
      {
        "familyName": "Krawczyk", 
        "givenName": "Hugo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-54631-0_8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-54630-3", 
        "978-3-642-54631-0"
      ], 
      "name": "Public-Key Cryptography \u2013 PKC 2014", 
      "type": "Book"
    }, 
    "keywords": [
      "oblivious storage", 
      "Oblivious RAM", 
      "secure multi-party computation", 
      "multi-party computation", 
      "server-side computation", 
      "access pattern privacy", 
      "freshness of data", 
      "storage of data", 
      "large block sizes", 
      "data confidentiality", 
      "server computation", 
      "data integrity", 
      "ORAM scheme", 
      "bandwidth overhead", 
      "dynamic proof", 
      "block size", 
      "queries", 
      "server", 
      "computation", 
      "scheme", 
      "privacy", 
      "overhead", 
      "confidentiality", 
      "freshness", 
      "Ostrovsky", 
      "constant bandwidth", 
      "Goldreich", 
      "storage", 
      "retrievability", 
      "bandwidth", 
      "clients", 
      "rams", 
      "applications", 
      "proof", 
      "notion", 
      "data", 
      "integrity", 
      "size", 
      "VOS", 
      "pattern privacy", 
      "efficient VOS schemes", 
      "VOS schemes", 
      "poly-logarithmic server computation", 
      "applications of VOS", 
      "RAM-model secure multi-party computation"
    ], 
    "name": "Verifiable Oblivious Storage", 
    "pagination": "131-148", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031381253"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-54631-0_8"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-54631-0_8", 
      "https://app.dimensions.ai/details/publication/pub.1031381253"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T19:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_187.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-54631-0_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54631-0_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54631-0_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54631-0_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54631-0_8'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      23 PREDICATES      72 URIs      64 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-54631-0_8 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 anzsrc-for:0804
4 schema:author N71d0e5aff8c64b51b07a02cf06ff0310
5 schema:datePublished 2014
6 schema:datePublishedReg 2014-01-01
7 schema:description We formalize the notion of Verifiable Oblivious Storage (VOS), where a client outsources the storage of data to a server while ensuring data confidentiality, access pattern privacy, and integrity and freshness of data accesses. VOS generalizes the notion of Oblivious RAM (ORAM) in that it allows the server to perform computation, and also explicitly considers data integrity and freshness.We show that allowing server-side computation enables us to construct asymptotically more efficient VOS schemes whose bandwidth overhead cannot be matched by any ORAM scheme, due to a known lower bound by Goldreich and Ostrovsky. Specifically, for large block sizes we can construct a VOS scheme with constant bandwidth per query; further, answering queries requires only poly-logarithmic server computation. We describe applications of VOS to Dynamic Proofs of Retrievability, and RAM-model secure multi-party computation.
8 schema:editor N19c3b423bc574c798b8a13e957707e5c
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf Nf43cc79096c54befb701c9fa84f40250
13 schema:keywords Goldreich
14 ORAM scheme
15 Oblivious RAM
16 Ostrovsky
17 RAM-model secure multi-party computation
18 VOS
19 VOS schemes
20 access pattern privacy
21 applications
22 applications of VOS
23 bandwidth
24 bandwidth overhead
25 block size
26 clients
27 computation
28 confidentiality
29 constant bandwidth
30 data
31 data confidentiality
32 data integrity
33 dynamic proof
34 efficient VOS schemes
35 freshness
36 freshness of data
37 integrity
38 large block sizes
39 multi-party computation
40 notion
41 oblivious storage
42 overhead
43 pattern privacy
44 poly-logarithmic server computation
45 privacy
46 proof
47 queries
48 rams
49 retrievability
50 scheme
51 secure multi-party computation
52 server
53 server computation
54 server-side computation
55 size
56 storage
57 storage of data
58 schema:name Verifiable Oblivious Storage
59 schema:pagination 131-148
60 schema:productId N306d17bacc8940b9a73fef127dc23b21
61 Nd528d717ca004f12a34ae0c8c9b68c23
62 schema:publisher N23bd06f5067a413b83226baa1f2ae7b2
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031381253
64 https://doi.org/10.1007/978-3-642-54631-0_8
65 schema:sdDatePublished 2021-12-01T19:59
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N9a5c674765f04ccf8500fca63e184c3a
68 schema:url https://doi.org/10.1007/978-3-642-54631-0_8
69 sgo:license sg:explorer/license/
70 sgo:sdDataset chapters
71 rdf:type schema:Chapter
72 N19c3b423bc574c798b8a13e957707e5c rdf:first Nfb239350b4bb4238bae83efdb0c383ca
73 rdf:rest rdf:nil
74 N23bd06f5067a413b83226baa1f2ae7b2 schema:name Springer Nature
75 rdf:type schema:Organisation
76 N306d17bacc8940b9a73fef127dc23b21 schema:name dimensions_id
77 schema:value pub.1031381253
78 rdf:type schema:PropertyValue
79 N6ee96ad523ab473ba29d06b3b447ebf5 rdf:first sg:person.01354261156.67
80 rdf:rest Nc1d7d65804ee4893b590959cfd7e7187
81 N71d0e5aff8c64b51b07a02cf06ff0310 rdf:first sg:person.011117107753.11
82 rdf:rest N6ee96ad523ab473ba29d06b3b447ebf5
83 N953246bd0aae43fb87454ebac7569027 rdf:first sg:person.016103031076.19
84 rdf:rest rdf:nil
85 N9a5c674765f04ccf8500fca63e184c3a schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Nc1d7d65804ee4893b590959cfd7e7187 rdf:first sg:person.014706274717.52
88 rdf:rest N953246bd0aae43fb87454ebac7569027
89 Nd528d717ca004f12a34ae0c8c9b68c23 schema:name doi
90 schema:value 10.1007/978-3-642-54631-0_8
91 rdf:type schema:PropertyValue
92 Nf43cc79096c54befb701c9fa84f40250 schema:isbn 978-3-642-54630-3
93 978-3-642-54631-0
94 schema:name Public-Key Cryptography – PKC 2014
95 rdf:type schema:Book
96 Nfb239350b4bb4238bae83efdb0c383ca schema:familyName Krawczyk
97 schema:givenName Hugo
98 rdf:type schema:Person
99 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
100 schema:name Information and Computing Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
103 schema:name Computation Theory and Mathematics
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
106 schema:name Data Format
107 rdf:type schema:DefinedTerm
108 sg:person.011117107753.11 schema:affiliation grid-institutes:grid.164295.d
109 schema:familyName Apon
110 schema:givenName Daniel
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011117107753.11
112 rdf:type schema:Person
113 sg:person.01354261156.67 schema:affiliation grid-institutes:grid.164295.d
114 schema:familyName Katz
115 schema:givenName Jonathan
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354261156.67
117 rdf:type schema:Person
118 sg:person.014706274717.52 schema:affiliation grid-institutes:grid.164295.d
119 schema:familyName Shi
120 schema:givenName Elaine
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014706274717.52
122 rdf:type schema:Person
123 sg:person.016103031076.19 schema:affiliation grid-institutes:grid.164295.d
124 schema:familyName Thiruvengadam
125 schema:givenName Aishwarya
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016103031076.19
127 rdf:type schema:Person
128 grid-institutes:grid.164295.d schema:alternateName University of Maryland, 20742, College Park, MD, USA
129 schema:name University of Maryland, 20742, College Park, MD, USA
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...