On the Lossiness of the Rabin Trapdoor Function View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Yannick Seurin

ABSTRACT

Lossy trapdoor functions, introduced by Peikert and Waters (STOC ’08), are functions that can be generated in two indistinguishable ways: either the function is injective, and there is a trapdoor to invert it, or the function is lossy, meaning that the size of its range is strictly smaller than the size of its domain. Kakvi and Kiltz (EUROCRYPT 2012) proved that the Full Domain Hash signature scheme based on a lossy trapdoor function has a tight security reduction from the lossiness of the trapdoor function. Since Kiltz, O’Neill, and Smith (CRYPTO 2010) showed that the RSA trapdoor function is lossy under the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varPhi$\end{document}-Hiding assumption of Cachin, Micali, and Stadler (EUROCRYPT ’99), this implies that the RSA Full Domain Hash signature scheme has a tight security reduction from the Φ-Hiding assumption (for public exponents e < N1/4). In this work, we consider the Rabin trapdoor function, i.e. modular squaring over ℤ*N. We show that when adequately restricting its domain (either to the set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb{QR}}_N$\end{document} of quadratic residues, or to (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb J}_N)^+$\end{document}, the set of positive integers 1 ≤ x ≤ (N − 1)/2 with Jacobi symbol +1) the Rabin trapdoor function is lossy, the injective mode corresponding to Blum integers N = pq with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p,q\equiv 3\bmod 4$\end{document}, and the lossy mode corresponding to what we call pseudo-Blum integers N = pq with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p,q\equiv 1 \bmod 4$\end{document}. This lossiness result holds under a natural extension of the Φ-Hiding assumption to the case e = 2 that we call the 2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varPhi/4$\end{document}-Hiding assumption. We then use this result to prove that deterministic variants of Rabin-Williams Full Domain Hash signatures have a tight reduction from the 2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varPhi$\end{document}/4-Hiding assumption. We also show that these schemes are unlikely to have a tight reduction from the factorization problem by extending a previous “meta-reduction” result by Coron (EUROCRYPT 2002), later corrected by Kakvi and Kiltz (EUROCRYPT 2012). These two results therefore answer one of the main questions left open by Bernstein (EUROCRYPT 2008) in his work on Rabin-Williams signatures. More... »

PAGES

380-398

Book

TITLE

Public-Key Cryptography – PKC 2014

ISBN

978-3-642-54630-3
978-3-642-54631-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-54631-0_22

DOI

http://dx.doi.org/10.1007/978-3-642-54631-0_22

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003820973


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "ANSSI, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "ANSSI, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seurin", 
        "givenName": "Yannick", 
        "id": "sg:person.011724731171.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724731171.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Lossy trapdoor functions, introduced by Peikert and Waters (STOC\u00a0\u201908), are functions that can be generated in two indistinguishable ways: either the function is injective, and there is a trapdoor to invert it, or the function is lossy, meaning that the size of its range is strictly smaller than the size of its domain. Kakvi and Kiltz (EUROCRYPT 2012) proved that the Full Domain Hash signature scheme based on a lossy trapdoor function has a tight security reduction from the lossiness of the trapdoor function. Since Kiltz, O\u2019Neill, and Smith (CRYPTO 2010) showed that the RSA trapdoor function is lossy under the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\varPhi$\\end{document}-Hiding assumption of Cachin, Micali, and Stadler (EUROCRYPT\u00a0\u201999), this implies that the RSA Full Domain Hash signature scheme has a tight security reduction from the \u03a6-Hiding assumption (for public exponents e\u2009<\u2009N1/4). In this work, we consider the Rabin trapdoor function, i.e. modular squaring over \u2124*N. We show that when adequately restricting its domain (either to the set \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}${\\mathbb{QR}}_N$\\end{document} of quadratic residues, or to (\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}${\\mathbb J}_N)^+$\\end{document}, the set of positive integers 1\u2009\u2264\u2009x\u2009\u2264\u2009(N\u2009\u2212\u20091)/2 with Jacobi symbol +1) the Rabin trapdoor function is lossy, the injective mode corresponding to Blum integers N\u2009=\u2009pq with \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$p,q\\equiv 3\\bmod 4$\\end{document}, and the lossy mode corresponding to what we call pseudo-Blum integers N\u2009=\u2009pq with \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$p,q\\equiv 1 \\bmod 4$\\end{document}. This lossiness result holds under a natural extension of the \u03a6-Hiding assumption to the case e\u2009=\u20092 that we call the 2-\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\varPhi/4$\\end{document}-Hiding assumption. We then use this result to prove that deterministic variants of Rabin-Williams Full Domain Hash signatures have a tight reduction from the 2-\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\varPhi$\\end{document}/4-Hiding assumption. We also show that these schemes are unlikely to have a tight reduction from the factorization problem by extending a previous \u201cmeta-reduction\u201d result by Coron (EUROCRYPT 2002), later corrected by Kakvi and Kiltz (EUROCRYPT 2012). These two results therefore answer one of the main questions left open by Bernstein (EUROCRYPT 2008) in his work on Rabin-Williams signatures.", 
    "editor": [
      {
        "familyName": "Krawczyk", 
        "givenName": "Hugo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-54631-0_22", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-54630-3", 
        "978-3-642-54631-0"
      ], 
      "name": "Public-Key Cryptography \u2013 PKC 2014", 
      "type": "Book"
    }, 
    "keywords": [
      "reduction", 
      "function", 
      "results", 
      "variants", 
      "size", 
      "signatures", 
      "domain", 
      "questions", 
      "case E", 
      "main question", 
      "range", 
      "extension", 
      "work", 
      "mode", 
      "problem", 
      "way", 
      "water", 
      "Smith", 
      "assumption", 
      "trapdoor", 
      "indistinguishable way", 
      "squaring", 
      "scheme", 
      "Bernstein", 
      "integer n", 
      "Stadler", 
      "natural extension", 
      "tight reduction", 
      "Cachin", 
      "lossiness", 
      "Full Domain Hash signature scheme", 
      "signature scheme", 
      "O\u2019Neill", 
      "lossy mode", 
      "trapdoor functions", 
      "Peikert", 
      "lossy", 
      "Kiltz", 
      "lossy trapdoor functions", 
      "tight security reduction", 
      "security reduction", 
      "Micali", 
      "\u03a6-Hiding assumption", 
      "modular squaring", 
      "deterministic variant", 
      "hash signature", 
      "factorization problem", 
      "Coron"
    ], 
    "name": "On the Lossiness of the Rabin Trapdoor Function", 
    "pagination": "380-398", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003820973"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-54631-0_22"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-54631-0_22", 
      "https://app.dimensions.ai/details/publication/pub.1003820973"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_443.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-54631-0_22"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54631-0_22'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54631-0_22'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54631-0_22'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54631-0_22'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      22 PREDICATES      73 URIs      66 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-54631-0_22 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ncf613f7eecfe422abaadf2b91acf7e42
4 schema:datePublished 2014
5 schema:datePublishedReg 2014-01-01
6 schema:description Lossy trapdoor functions, introduced by Peikert and Waters (STOC ’08), are functions that can be generated in two indistinguishable ways: either the function is injective, and there is a trapdoor to invert it, or the function is lossy, meaning that the size of its range is strictly smaller than the size of its domain. Kakvi and Kiltz (EUROCRYPT 2012) proved that the Full Domain Hash signature scheme based on a lossy trapdoor function has a tight security reduction from the lossiness of the trapdoor function. Since Kiltz, O’Neill, and Smith (CRYPTO 2010) showed that the RSA trapdoor function is lossy under the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varPhi$\end{document}-Hiding assumption of Cachin, Micali, and Stadler (EUROCRYPT ’99), this implies that the RSA Full Domain Hash signature scheme has a tight security reduction from the Φ-Hiding assumption (for public exponents e < N1/4). In this work, we consider the Rabin trapdoor function, i.e. modular squaring over ℤ*N. We show that when adequately restricting its domain (either to the set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb{QR}}_N$\end{document} of quadratic residues, or to (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb J}_N)^+$\end{document}, the set of positive integers 1 ≤ x ≤ (N − 1)/2 with Jacobi symbol +1) the Rabin trapdoor function is lossy, the injective mode corresponding to Blum integers N = pq with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p,q\equiv 3\bmod 4$\end{document}, and the lossy mode corresponding to what we call pseudo-Blum integers N = pq with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p,q\equiv 1 \bmod 4$\end{document}. This lossiness result holds under a natural extension of the Φ-Hiding assumption to the case e = 2 that we call the 2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varPhi/4$\end{document}-Hiding assumption. We then use this result to prove that deterministic variants of Rabin-Williams Full Domain Hash signatures have a tight reduction from the 2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varPhi$\end{document}/4-Hiding assumption. We also show that these schemes are unlikely to have a tight reduction from the factorization problem by extending a previous “meta-reduction” result by Coron (EUROCRYPT 2002), later corrected by Kakvi and Kiltz (EUROCRYPT 2012). These two results therefore answer one of the main questions left open by Bernstein (EUROCRYPT 2008) in his work on Rabin-Williams signatures.
7 schema:editor N643fa5057900498ebdc7cad4db6a258c
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N1aa1c8b9d6254c8796d5add73fee18b9
11 schema:keywords Bernstein
12 Cachin
13 Coron
14 Full Domain Hash signature scheme
15 Kiltz
16 Micali
17 O’Neill
18 Peikert
19 Smith
20 Stadler
21 assumption
22 case E
23 deterministic variant
24 domain
25 extension
26 factorization problem
27 function
28 hash signature
29 indistinguishable way
30 integer n
31 lossiness
32 lossy
33 lossy mode
34 lossy trapdoor functions
35 main question
36 mode
37 modular squaring
38 natural extension
39 problem
40 questions
41 range
42 reduction
43 results
44 scheme
45 security reduction
46 signature scheme
47 signatures
48 size
49 squaring
50 tight reduction
51 tight security reduction
52 trapdoor
53 trapdoor functions
54 variants
55 water
56 way
57 work
58 Φ-Hiding assumption
59 schema:name On the Lossiness of the Rabin Trapdoor Function
60 schema:pagination 380-398
61 schema:productId N458430a173ca4ac5b1753ce983ff2345
62 N8eb3487447f6437faeaf7d46e7d4e27d
63 schema:publisher N0e52372031c54c92a5dc80ea426ea965
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003820973
65 https://doi.org/10.1007/978-3-642-54631-0_22
66 schema:sdDatePublished 2022-12-01T06:54
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Ndb48694f2eb34683a18f27c89bdc62ac
69 schema:url https://doi.org/10.1007/978-3-642-54631-0_22
70 sgo:license sg:explorer/license/
71 sgo:sdDataset chapters
72 rdf:type schema:Chapter
73 N0e52372031c54c92a5dc80ea426ea965 schema:name Springer Nature
74 rdf:type schema:Organisation
75 N1aa1c8b9d6254c8796d5add73fee18b9 schema:isbn 978-3-642-54630-3
76 978-3-642-54631-0
77 schema:name Public-Key Cryptography – PKC 2014
78 rdf:type schema:Book
79 N458430a173ca4ac5b1753ce983ff2345 schema:name dimensions_id
80 schema:value pub.1003820973
81 rdf:type schema:PropertyValue
82 N643fa5057900498ebdc7cad4db6a258c rdf:first N7b83c2d37d4b421790079c6f7e79ed7d
83 rdf:rest rdf:nil
84 N7b83c2d37d4b421790079c6f7e79ed7d schema:familyName Krawczyk
85 schema:givenName Hugo
86 rdf:type schema:Person
87 N8eb3487447f6437faeaf7d46e7d4e27d schema:name doi
88 schema:value 10.1007/978-3-642-54631-0_22
89 rdf:type schema:PropertyValue
90 Ncf613f7eecfe422abaadf2b91acf7e42 rdf:first sg:person.011724731171.01
91 rdf:rest rdf:nil
92 Ndb48694f2eb34683a18f27c89bdc62ac schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
95 schema:name Information and Computing Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
98 schema:name Artificial Intelligence and Image Processing
99 rdf:type schema:DefinedTerm
100 sg:person.011724731171.01 schema:affiliation grid-institutes:None
101 schema:familyName Seurin
102 schema:givenName Yannick
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724731171.01
104 rdf:type schema:Person
105 grid-institutes:None schema:alternateName ANSSI, Paris, France
106 schema:name ANSSI, Paris, France
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...