A Framework for the Pre-clinical Validation of LBM-EP for the Planning and Guidance of Ventricular Tachycardia Ablation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Tommaso Mansi , Roy Beinart , Oliver Zettinig , Saikiran Rapaka , Bogdan Georgescu , Ali Kamen , Yoav Dori , M. Muz Zviman , Daniel A. Herzka , Henry R. Halperin , Dorin Comaniciu

ABSTRACT

This manuscript presents a framework for the pre-clinical validation of LBM-EP, a fast cardiac electrophysiology model based on the lattice-Boltzmann method (LBM). The overarching goal is to assess whether the model is able to predict ventricular tachycardia (VT) induction given lead location and stimulation protocol. First, the random-walk algorithm is used to interactively segment the heart ventricles from delayed-enhancement magnetic resonance images (DE-MRI). Scar and border zone are visually delineated using image thresholding. Then, a detailed anatomical model is generated, comprising fiber architecture and spatial distribution of action potential duration. That information is rasterized to a Cartesian grid, and the cardiac potentials are computed. The framework is illustrated on one swine data, for which two different pacing protocols at four different sites were tested. Each of the protocols were then virtually tested by computing seven seconds of heart beat. Model predictions in terms of VT induction were compared with what was observed in the animal. Our parallel implementation on graphics processing units required a total computation time of about two minutes at an isotropic grid resolution of 0.8 mm (21s at a resolution of 1.5 mm), thus enabling interactive VT testing. More... »

PAGES

253-261

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-54268-8_30

DOI

http://dx.doi.org/10.1007/978-3-642-54268-8_30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053620028


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansi", 
        "givenName": "Tommaso", 
        "id": "sg:person.01217474726.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel", 
          "id": "http://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Cardiology Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA", 
            "Davidai Arrhythmia Center, Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel", 
            "Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beinart", 
        "givenName": "Roy", 
        "id": "sg:person.01055160002.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055160002.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Aided Medical Procedures, Technische Universit\u00e4t M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
            "Computer Aided Medical Procedures, Technische Universit\u00e4t M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zettinig", 
        "givenName": "Oliver", 
        "id": "sg:person.01205463542.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205463542.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rapaka", 
        "givenName": "Saikiran", 
        "id": "sg:person.0754574330.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754574330.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamen", 
        "givenName": "Ali", 
        "id": "sg:person.0656777564.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656777564.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Division of Cardiology, The Children\u2019s Hospital of Philadelphia, Philadelphia, PA, USA", 
            "Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dori", 
        "givenName": "Yoav", 
        "id": "sg:person.0650236112.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650236112.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiology Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Cardiology Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zviman", 
        "givenName": "M. Muz", 
        "id": "sg:person.012061057467.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012061057467.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herzka", 
        "givenName": "Daniel A.", 
        "id": "sg:person.012605012447.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012605012447.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Cardiology Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA", 
            "Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA", 
            "The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Halperin", 
        "givenName": "Henry R.", 
        "id": "sg:person.015472547337.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015472547337.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "This manuscript presents a framework for the pre-clinical validation of LBM-EP, a fast cardiac electrophysiology model based on the lattice-Boltzmann method (LBM). The overarching goal is to assess whether the model is able to predict ventricular tachycardia (VT) induction given lead location and stimulation protocol. First, the random-walk algorithm is used to interactively segment the heart ventricles from delayed-enhancement magnetic resonance images (DE-MRI). Scar and border zone are visually delineated using image thresholding. Then, a detailed anatomical model is generated, comprising fiber architecture and spatial distribution of action potential duration. That information is rasterized to a Cartesian grid, and the cardiac potentials are computed. The framework is illustrated on one swine data, for which two different pacing protocols at four different sites were tested. Each of the protocols were then virtually tested by computing seven seconds of heart beat. Model predictions in terms of VT induction were compared with what was observed in the animal. Our parallel implementation on graphics processing units required a total computation time of about two minutes at an isotropic grid resolution of 0.8 mm (21s at a resolution of 1.5 mm), thus enabling interactive VT testing.", 
    "editor": [
      {
        "familyName": "Camara", 
        "givenName": "Oscar", 
        "type": "Person"
      }, 
      {
        "familyName": "Mansi", 
        "givenName": "Tommaso", 
        "type": "Person"
      }, 
      {
        "familyName": "Pop", 
        "givenName": "Mihaela", 
        "type": "Person"
      }, 
      {
        "familyName": "Rhode", 
        "givenName": "Kawal", 
        "type": "Person"
      }, 
      {
        "familyName": "Sermesant", 
        "givenName": "Maxime", 
        "type": "Person"
      }, 
      {
        "familyName": "Young", 
        "givenName": "Alistair", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-54268-8_30", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-54267-1", 
        "978-3-642-54268-8"
      ], 
      "name": "Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges", 
      "type": "Book"
    }, 
    "keywords": [
      "delay-enhancement magnetic resonance images", 
      "graphics processing units", 
      "pre-clinical validation", 
      "random-walk algorithm", 
      "total computation time", 
      "image thresholding", 
      "parallel implementation", 
      "processing units", 
      "ventricular tachycardia induction", 
      "computation time", 
      "ventricular tachycardia ablation", 
      "action potential duration", 
      "cardiac electrophysiology models", 
      "tachycardia induction", 
      "tachycardia ablation", 
      "VT induction", 
      "different pacing protocols", 
      "stimulation protocols", 
      "potential duration", 
      "lead location", 
      "detailed anatomical models", 
      "anatomical models", 
      "electrophysiology models", 
      "magnetic resonance images", 
      "pacing protocol", 
      "Cartesian grid", 
      "framework", 
      "heart ventricle", 
      "border zone", 
      "resonance images", 
      "protocol", 
      "lattice-Boltzmann method", 
      "thresholding", 
      "algorithm", 
      "architecture", 
      "cardiac potentials", 
      "induction", 
      "implementation", 
      "images", 
      "swine data", 
      "grid", 
      "ventricle", 
      "overarching goal", 
      "information", 
      "validation", 
      "model", 
      "scar", 
      "heart", 
      "planning", 
      "duration", 
      "animals", 
      "ablation", 
      "minutes", 
      "goal", 
      "different sites", 
      "grid resolution", 
      "seconds", 
      "testing", 
      "method", 
      "location", 
      "data", 
      "prediction", 
      "guidance", 
      "terms", 
      "time", 
      "sites", 
      "resolution", 
      "units", 
      "manuscript", 
      "potential", 
      "fiber architecture", 
      "distribution", 
      "model predictions", 
      "spatial distribution", 
      "zone", 
      "LBM-EP", 
      "fast cardiac electrophysiology model", 
      "seconds of heart", 
      "isotropic grid resolution", 
      "interactive VT testing", 
      "VT testing"
    ], 
    "name": "A Framework for the Pre-clinical Validation of LBM-EP for the Planning and Guidance of Ventricular Tachycardia Ablation", 
    "pagination": "253-261", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053620028"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-54268-8_30"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-54268-8_30", 
      "https://app.dimensions.ai/details/publication/pub.1053620028"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_286.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-54268-8_30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54268-8_30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54268-8_30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54268-8_30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54268-8_30'


 

This table displays all metadata directly associated to this object as RDF triples.

256 TRIPLES      23 PREDICATES      107 URIs      100 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-54268-8_30 schema:about anzsrc-for:11
2 anzsrc-for:1102
3 schema:author Nc060686fdd264b40b624b775420f0bfb
4 schema:datePublished 2014
5 schema:datePublishedReg 2014-01-01
6 schema:description This manuscript presents a framework for the pre-clinical validation of LBM-EP, a fast cardiac electrophysiology model based on the lattice-Boltzmann method (LBM). The overarching goal is to assess whether the model is able to predict ventricular tachycardia (VT) induction given lead location and stimulation protocol. First, the random-walk algorithm is used to interactively segment the heart ventricles from delayed-enhancement magnetic resonance images (DE-MRI). Scar and border zone are visually delineated using image thresholding. Then, a detailed anatomical model is generated, comprising fiber architecture and spatial distribution of action potential duration. That information is rasterized to a Cartesian grid, and the cardiac potentials are computed. The framework is illustrated on one swine data, for which two different pacing protocols at four different sites were tested. Each of the protocols were then virtually tested by computing seven seconds of heart beat. Model predictions in terms of VT induction were compared with what was observed in the animal. Our parallel implementation on graphics processing units required a total computation time of about two minutes at an isotropic grid resolution of 0.8 mm (21s at a resolution of 1.5 mm), thus enabling interactive VT testing.
7 schema:editor N4184ef5992bc426fb94393d2cec15c56
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N8f85c83c50be49ae9d6f4bdb1b2f45da
12 schema:keywords Cartesian grid
13 LBM-EP
14 VT induction
15 VT testing
16 ablation
17 action potential duration
18 algorithm
19 anatomical models
20 animals
21 architecture
22 border zone
23 cardiac electrophysiology models
24 cardiac potentials
25 computation time
26 data
27 delay-enhancement magnetic resonance images
28 detailed anatomical models
29 different pacing protocols
30 different sites
31 distribution
32 duration
33 electrophysiology models
34 fast cardiac electrophysiology model
35 fiber architecture
36 framework
37 goal
38 graphics processing units
39 grid
40 grid resolution
41 guidance
42 heart
43 heart ventricle
44 image thresholding
45 images
46 implementation
47 induction
48 information
49 interactive VT testing
50 isotropic grid resolution
51 lattice-Boltzmann method
52 lead location
53 location
54 magnetic resonance images
55 manuscript
56 method
57 minutes
58 model
59 model predictions
60 overarching goal
61 pacing protocol
62 parallel implementation
63 planning
64 potential
65 potential duration
66 pre-clinical validation
67 prediction
68 processing units
69 protocol
70 random-walk algorithm
71 resolution
72 resonance images
73 scar
74 seconds
75 seconds of heart
76 sites
77 spatial distribution
78 stimulation protocols
79 swine data
80 tachycardia ablation
81 tachycardia induction
82 terms
83 testing
84 thresholding
85 time
86 total computation time
87 units
88 validation
89 ventricle
90 ventricular tachycardia ablation
91 ventricular tachycardia induction
92 zone
93 schema:name A Framework for the Pre-clinical Validation of LBM-EP for the Planning and Guidance of Ventricular Tachycardia Ablation
94 schema:pagination 253-261
95 schema:productId N366a163423ab462384a1cadd81ec9a70
96 N3b33163d421a49ac96fcdf6568d6cdba
97 schema:publisher N3416134a7b1a458c951d80c7ac1b1878
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053620028
99 https://doi.org/10.1007/978-3-642-54268-8_30
100 schema:sdDatePublished 2022-01-01T19:16
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher Neab149b399c14c9996e768f30eb90353
103 schema:url https://doi.org/10.1007/978-3-642-54268-8_30
104 sgo:license sg:explorer/license/
105 sgo:sdDataset chapters
106 rdf:type schema:Chapter
107 N033130dc7e024f439b148740f15336fb rdf:first sg:person.0703547214.37
108 rdf:rest N1d6e73271e324516b2ff2969fd3dc37f
109 N171ce078d4c8412490c502112699cdeb rdf:first sg:person.01066111014.77
110 rdf:rest rdf:nil
111 N1d6e73271e324516b2ff2969fd3dc37f rdf:first sg:person.0656777564.42
112 rdf:rest N4b92048dc31641668f14675d0f8bfe6c
113 N1e898e38aa184b47820203de9809dcdc rdf:first Nc36766307ed048ee9bc44a9bdb138ac5
114 rdf:rest rdf:nil
115 N1fa03d5caa1447e29140a4330dc5eac2 rdf:first sg:person.0754574330.21
116 rdf:rest N033130dc7e024f439b148740f15336fb
117 N2b9d7668ad0b48f0a55cf83847a0105e rdf:first sg:person.01205463542.91
118 rdf:rest N1fa03d5caa1447e29140a4330dc5eac2
119 N3416134a7b1a458c951d80c7ac1b1878 schema:name Springer Nature
120 rdf:type schema:Organisation
121 N366a163423ab462384a1cadd81ec9a70 schema:name dimensions_id
122 schema:value pub.1053620028
123 rdf:type schema:PropertyValue
124 N3b33163d421a49ac96fcdf6568d6cdba schema:name doi
125 schema:value 10.1007/978-3-642-54268-8_30
126 rdf:type schema:PropertyValue
127 N4184ef5992bc426fb94393d2cec15c56 rdf:first N5e1f438e4d364883aa2c453947300706
128 rdf:rest N8c28d78daf6242d5992a1bcf04fb2d89
129 N446381e848524b838a4fbb63d6a9bcf1 rdf:first sg:person.012061057467.31
130 rdf:rest Ncac6b42a1c12477f9a51fe3c88c942d0
131 N4b92048dc31641668f14675d0f8bfe6c rdf:first sg:person.0650236112.58
132 rdf:rest N446381e848524b838a4fbb63d6a9bcf1
133 N4b9258bdcb3440edbafd44a58b95cf14 rdf:first Nd08df3506f6f4373ad8c193305d1e16d
134 rdf:rest Nccb3ee8b9b68412389a0a840fc51edaa
135 N5e1f438e4d364883aa2c453947300706 schema:familyName Camara
136 schema:givenName Oscar
137 rdf:type schema:Person
138 N87891aa7e88d41a883eb8ca6c5a314a6 rdf:first sg:person.01055160002.44
139 rdf:rest N2b9d7668ad0b48f0a55cf83847a0105e
140 N8c28d78daf6242d5992a1bcf04fb2d89 rdf:first Nbed53d2fce0e4ba5817963354232b9ab
141 rdf:rest N4b9258bdcb3440edbafd44a58b95cf14
142 N8f85c83c50be49ae9d6f4bdb1b2f45da schema:isbn 978-3-642-54267-1
143 978-3-642-54268-8
144 schema:name Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges
145 rdf:type schema:Book
146 N9e8f24d7f99449a7854d3bbcb1eb7689 schema:familyName Rhode
147 schema:givenName Kawal
148 rdf:type schema:Person
149 N9f2891285b594384a9fca4feb7cb87ec schema:familyName Sermesant
150 schema:givenName Maxime
151 rdf:type schema:Person
152 N9f74d66d00c34f8d8ca91b9e18715ead rdf:first sg:person.015472547337.57
153 rdf:rest N171ce078d4c8412490c502112699cdeb
154 Nbed53d2fce0e4ba5817963354232b9ab schema:familyName Mansi
155 schema:givenName Tommaso
156 rdf:type schema:Person
157 Nc060686fdd264b40b624b775420f0bfb rdf:first sg:person.01217474726.73
158 rdf:rest N87891aa7e88d41a883eb8ca6c5a314a6
159 Nc36766307ed048ee9bc44a9bdb138ac5 schema:familyName Young
160 schema:givenName Alistair
161 rdf:type schema:Person
162 Ncac6b42a1c12477f9a51fe3c88c942d0 rdf:first sg:person.012605012447.05
163 rdf:rest N9f74d66d00c34f8d8ca91b9e18715ead
164 Nccb3ee8b9b68412389a0a840fc51edaa rdf:first N9e8f24d7f99449a7854d3bbcb1eb7689
165 rdf:rest Nd2bd4667e67b4c7381f7f337bac4923d
166 Nd08df3506f6f4373ad8c193305d1e16d schema:familyName Pop
167 schema:givenName Mihaela
168 rdf:type schema:Person
169 Nd2bd4667e67b4c7381f7f337bac4923d rdf:first N9f2891285b594384a9fca4feb7cb87ec
170 rdf:rest N1e898e38aa184b47820203de9809dcdc
171 Neab149b399c14c9996e768f30eb90353 schema:name Springer Nature - SN SciGraph project
172 rdf:type schema:Organization
173 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
174 schema:name Medical and Health Sciences
175 rdf:type schema:DefinedTerm
176 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
177 schema:name Cardiorespiratory Medicine and Haematology
178 rdf:type schema:DefinedTerm
179 sg:person.01055160002.44 schema:affiliation grid-institutes:grid.12136.37
180 schema:familyName Beinart
181 schema:givenName Roy
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055160002.44
183 rdf:type schema:Person
184 sg:person.01066111014.77 schema:affiliation grid-institutes:None
185 schema:familyName Comaniciu
186 schema:givenName Dorin
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
188 rdf:type schema:Person
189 sg:person.01205463542.91 schema:affiliation grid-institutes:grid.6936.a
190 schema:familyName Zettinig
191 schema:givenName Oliver
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205463542.91
193 rdf:type schema:Person
194 sg:person.012061057467.31 schema:affiliation grid-institutes:grid.21107.35
195 schema:familyName Zviman
196 schema:givenName M. Muz
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012061057467.31
198 rdf:type schema:Person
199 sg:person.01217474726.73 schema:affiliation grid-institutes:None
200 schema:familyName Mansi
201 schema:givenName Tommaso
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73
203 rdf:type schema:Person
204 sg:person.012605012447.05 schema:affiliation grid-institutes:grid.21107.35
205 schema:familyName Herzka
206 schema:givenName Daniel A.
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012605012447.05
208 rdf:type schema:Person
209 sg:person.015472547337.57 schema:affiliation grid-institutes:grid.21107.35
210 schema:familyName Halperin
211 schema:givenName Henry R.
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015472547337.57
213 rdf:type schema:Person
214 sg:person.0650236112.58 schema:affiliation grid-institutes:grid.25879.31
215 schema:familyName Dori
216 schema:givenName Yoav
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650236112.58
218 rdf:type schema:Person
219 sg:person.0656777564.42 schema:affiliation grid-institutes:None
220 schema:familyName Kamen
221 schema:givenName Ali
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656777564.42
223 rdf:type schema:Person
224 sg:person.0703547214.37 schema:affiliation grid-institutes:None
225 schema:familyName Georgescu
226 schema:givenName Bogdan
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
228 rdf:type schema:Person
229 sg:person.0754574330.21 schema:affiliation grid-institutes:None
230 schema:familyName Rapaka
231 schema:givenName Saikiran
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754574330.21
233 rdf:type schema:Person
234 grid-institutes:None schema:alternateName Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA
235 schema:name Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA
236 rdf:type schema:Organization
237 grid-institutes:grid.12136.37 schema:alternateName Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
238 schema:name Cardiology Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
239 Davidai Arrhythmia Center, Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel
240 Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
241 rdf:type schema:Organization
242 grid-institutes:grid.21107.35 schema:alternateName Cardiology Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
243 Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
244 The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
245 schema:name Cardiology Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
246 Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
247 The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
248 rdf:type schema:Organization
249 grid-institutes:grid.25879.31 schema:alternateName Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
250 schema:name Division of Cardiology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
251 Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
252 rdf:type schema:Organization
253 grid-institutes:grid.6936.a schema:alternateName Computer Aided Medical Procedures, Technische Universität München, Germany
254 schema:name Computer Aided Medical Procedures, Technische Universität München, Germany
255 Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA
256 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...