A Unified Statistical/Deterministic Deformable Model for LV Segmentation in Cardiac MRI View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Sharath Gopal , Demetri Terzopoulos

ABSTRACT

We propose a novel deformable model with statistical and deterministic components for LV segmentation in cardiac magnetic resonance (MR) cine images. The statistical deformable component learns a global reference model of the LV using Principal Component Analysis (PCA) while the deterministic deformable component consists of a finite-element deformable surface superimposed on the reference model. The statistical model accounts for most of the global variations in shape found in the training set while the deterministic skin accounts for the local deformations consistent with the detailed image features. Intensity gradient-based image forces are applied to the model to segment and reconstruct LV shape. We validate our model on the MICCAI Grand Challenge dataset using leave-one-out training. Comparing the automated segmentation to the manual segmentation yields a Mean Perpendicular Distance (MPD) of 3.65 mm and a Dice coefficient of 0.86. More... »

PAGES

180-187

Book

TITLE

Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges

ISBN

978-3-642-54267-1
978-3-642-54268-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-54268-8_21

DOI

http://dx.doi.org/10.1007/978-3-642-54268-8_21

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035614193


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computer Science Department, University of California, Los Angeles, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Computer Science Department, University of California, Los Angeles, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gopal", 
        "givenName": "Sharath", 
        "id": "sg:person.013544572527.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013544572527.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Science Department, University of California, Los Angeles, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Computer Science Department, University of California, Los Angeles, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Terzopoulos", 
        "givenName": "Demetri", 
        "id": "sg:person.016347323445.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "We propose a novel deformable model with statistical and deterministic components for LV segmentation in cardiac magnetic resonance (MR) cine images. The statistical deformable component learns a global reference model of the LV using Principal Component Analysis (PCA) while the deterministic deformable component consists of a finite-element deformable surface superimposed on the reference model. The statistical model accounts for most of the global variations in shape found in the training set while the deterministic skin accounts for the local deformations consistent with the detailed image features. Intensity gradient-based image forces are applied to the model to segment and reconstruct LV shape. We validate our model on the MICCAI Grand Challenge dataset using leave-one-out training. Comparing the automated segmentation to the manual segmentation yields a Mean Perpendicular Distance (MPD) of 3.65\u00a0mm and a Dice coefficient of 0.86.", 
    "editor": [
      {
        "familyName": "Camara", 
        "givenName": "Oscar", 
        "type": "Person"
      }, 
      {
        "familyName": "Mansi", 
        "givenName": "Tommaso", 
        "type": "Person"
      }, 
      {
        "familyName": "Pop", 
        "givenName": "Mihaela", 
        "type": "Person"
      }, 
      {
        "familyName": "Rhode", 
        "givenName": "Kawal", 
        "type": "Person"
      }, 
      {
        "familyName": "Sermesant", 
        "givenName": "Maxime", 
        "type": "Person"
      }, 
      {
        "familyName": "Young", 
        "givenName": "Alistair", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-54268-8_21", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-54267-1", 
        "978-3-642-54268-8"
      ], 
      "name": "Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges", 
      "type": "Book"
    }, 
    "keywords": [
      "deformable components", 
      "one-out training", 
      "reference model", 
      "statistical model", 
      "deterministic component", 
      "deformable model", 
      "principal component analysis", 
      "segmentation yields", 
      "model", 
      "component analysis", 
      "LV segmentation", 
      "perpendicular distance", 
      "segmentation", 
      "cardiac magnetic resonance (CMR) cine images", 
      "LV shape", 
      "grand challenge dataset", 
      "detailed image features", 
      "novel deformable model", 
      "coefficient", 
      "image features", 
      "challenge dataset", 
      "Dice coefficient", 
      "deformable surfaces", 
      "datasets", 
      "global variation", 
      "shape", 
      "local deformation", 
      "components", 
      "analysis", 
      "distance", 
      "cine images", 
      "force", 
      "deformation", 
      "features", 
      "images", 
      "global reference model", 
      "variation", 
      "cardiac MRI", 
      "training", 
      "leave", 
      "image force", 
      "surface", 
      "LV", 
      "yield", 
      "MRI", 
      "skin", 
      "mean perpendicular distance", 
      "magnetic resonance (MR) cine images", 
      "resonance (MR) cine images", 
      "statistical deformable component", 
      "deterministic deformable component", 
      "finite-element deformable surface", 
      "deterministic skin", 
      "Intensity gradient-based image forces", 
      "gradient-based image forces", 
      "MICCAI Grand Challenge dataset", 
      "manual segmentation yields", 
      "Unified Statistical/Deterministic Deformable Model", 
      "Statistical/Deterministic Deformable Model", 
      "Deterministic Deformable Model"
    ], 
    "name": "A Unified Statistical/Deterministic Deformable Model for LV Segmentation in Cardiac MRI", 
    "pagination": "180-187", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035614193"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-54268-8_21"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-54268-8_21", 
      "https://app.dimensions.ai/details/publication/pub.1035614193"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_212.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-54268-8_21"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54268-8_21'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54268-8_21'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54268-8_21'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54268-8_21'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      23 PREDICATES      86 URIs      79 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-54268-8_21 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nc05947ad3f9b441ea8447fac6bf8f23e
4 schema:datePublished 2014
5 schema:datePublishedReg 2014-01-01
6 schema:description We propose a novel deformable model with statistical and deterministic components for LV segmentation in cardiac magnetic resonance (MR) cine images. The statistical deformable component learns a global reference model of the LV using Principal Component Analysis (PCA) while the deterministic deformable component consists of a finite-element deformable surface superimposed on the reference model. The statistical model accounts for most of the global variations in shape found in the training set while the deterministic skin accounts for the local deformations consistent with the detailed image features. Intensity gradient-based image forces are applied to the model to segment and reconstruct LV shape. We validate our model on the MICCAI Grand Challenge dataset using leave-one-out training. Comparing the automated segmentation to the manual segmentation yields a Mean Perpendicular Distance (MPD) of 3.65 mm and a Dice coefficient of 0.86.
7 schema:editor N3acfacc9f1854dcab57d2a5b6e34920e
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N59776f0fa1084548ac3f5e4c05f7ae23
12 schema:keywords Deterministic Deformable Model
13 Dice coefficient
14 Intensity gradient-based image forces
15 LV
16 LV segmentation
17 LV shape
18 MICCAI Grand Challenge dataset
19 MRI
20 Statistical/Deterministic Deformable Model
21 Unified Statistical/Deterministic Deformable Model
22 analysis
23 cardiac MRI
24 cardiac magnetic resonance (CMR) cine images
25 challenge dataset
26 cine images
27 coefficient
28 component analysis
29 components
30 datasets
31 deformable components
32 deformable model
33 deformable surfaces
34 deformation
35 detailed image features
36 deterministic component
37 deterministic deformable component
38 deterministic skin
39 distance
40 features
41 finite-element deformable surface
42 force
43 global reference model
44 global variation
45 gradient-based image forces
46 grand challenge dataset
47 image features
48 image force
49 images
50 leave
51 local deformation
52 magnetic resonance (MR) cine images
53 manual segmentation yields
54 mean perpendicular distance
55 model
56 novel deformable model
57 one-out training
58 perpendicular distance
59 principal component analysis
60 reference model
61 resonance (MR) cine images
62 segmentation
63 segmentation yields
64 shape
65 skin
66 statistical deformable component
67 statistical model
68 surface
69 training
70 variation
71 yield
72 schema:name A Unified Statistical/Deterministic Deformable Model for LV Segmentation in Cardiac MRI
73 schema:pagination 180-187
74 schema:productId N242fdae489a1419fa5b8103172d639b2
75 N43a4d2eafd094c6bb67cd6e4ef32ed66
76 schema:publisher N418334e779f64315bbc12ecd58b5e2a0
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035614193
78 https://doi.org/10.1007/978-3-642-54268-8_21
79 schema:sdDatePublished 2022-01-01T19:12
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N226856530d7648d4a8cf93e228b65722
82 schema:url https://doi.org/10.1007/978-3-642-54268-8_21
83 sgo:license sg:explorer/license/
84 sgo:sdDataset chapters
85 rdf:type schema:Chapter
86 N0e41922a8ba541a199b09f03dacd721e rdf:first Nf0805053fd0c46c287cfdfacfdd9aa05
87 rdf:rest N1449d8289ecc45abb3a3da1b6e233d62
88 N142f4513faa34310a29c127912da87a8 schema:familyName Young
89 schema:givenName Alistair
90 rdf:type schema:Person
91 N1449d8289ecc45abb3a3da1b6e233d62 rdf:first N8bf4d1362ca94320b59200d94abe4672
92 rdf:rest Nbc2149141b8a4a0eb67030e32048c901
93 N226856530d7648d4a8cf93e228b65722 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N242fdae489a1419fa5b8103172d639b2 schema:name dimensions_id
96 schema:value pub.1035614193
97 rdf:type schema:PropertyValue
98 N3acfacc9f1854dcab57d2a5b6e34920e rdf:first N743e328c5dee42b888a37eb315fd4350
99 rdf:rest N65bc6b088bfe4869b0f05199b0550990
100 N3af34dcb5d514bb28ccb5e168ff32b40 schema:familyName Mansi
101 schema:givenName Tommaso
102 rdf:type schema:Person
103 N418334e779f64315bbc12ecd58b5e2a0 schema:name Springer Nature
104 rdf:type schema:Organisation
105 N43a4d2eafd094c6bb67cd6e4ef32ed66 schema:name doi
106 schema:value 10.1007/978-3-642-54268-8_21
107 rdf:type schema:PropertyValue
108 N59776f0fa1084548ac3f5e4c05f7ae23 schema:isbn 978-3-642-54267-1
109 978-3-642-54268-8
110 schema:name Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges
111 rdf:type schema:Book
112 N65bc6b088bfe4869b0f05199b0550990 rdf:first N3af34dcb5d514bb28ccb5e168ff32b40
113 rdf:rest N0e41922a8ba541a199b09f03dacd721e
114 N719a1555882a4b1aaa9a3f50e1e86f57 rdf:first sg:person.016347323445.35
115 rdf:rest rdf:nil
116 N743e328c5dee42b888a37eb315fd4350 schema:familyName Camara
117 schema:givenName Oscar
118 rdf:type schema:Person
119 N8bf4d1362ca94320b59200d94abe4672 schema:familyName Rhode
120 schema:givenName Kawal
121 rdf:type schema:Person
122 Nbc2149141b8a4a0eb67030e32048c901 rdf:first Nc9abfb19709b40a9ba0a0fdb9a6cc2f6
123 rdf:rest Nd5c3044d1c534b5c90102f4c45954918
124 Nc05947ad3f9b441ea8447fac6bf8f23e rdf:first sg:person.013544572527.35
125 rdf:rest N719a1555882a4b1aaa9a3f50e1e86f57
126 Nc9abfb19709b40a9ba0a0fdb9a6cc2f6 schema:familyName Sermesant
127 schema:givenName Maxime
128 rdf:type schema:Person
129 Nd5c3044d1c534b5c90102f4c45954918 rdf:first N142f4513faa34310a29c127912da87a8
130 rdf:rest rdf:nil
131 Nf0805053fd0c46c287cfdfacfdd9aa05 schema:familyName Pop
132 schema:givenName Mihaela
133 rdf:type schema:Person
134 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
135 schema:name Mathematical Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
138 schema:name Statistics
139 rdf:type schema:DefinedTerm
140 sg:person.013544572527.35 schema:affiliation grid-institutes:grid.19006.3e
141 schema:familyName Gopal
142 schema:givenName Sharath
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013544572527.35
144 rdf:type schema:Person
145 sg:person.016347323445.35 schema:affiliation grid-institutes:grid.19006.3e
146 schema:familyName Terzopoulos
147 schema:givenName Demetri
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35
149 rdf:type schema:Person
150 grid-institutes:grid.19006.3e schema:alternateName Computer Science Department, University of California, Los Angeles, USA
151 schema:name Computer Science Department, University of California, Los Angeles, USA
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...