Stochastic Fluctuations in Deterministic Systems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Antonio Politi

ABSTRACT

The unavoidable presence of inhomogeneities in the phase space of a chaotic system induces fluctuations in the degree of stability, even when long trajectories are considered. The characterization of such fluctuations requires to go beyond average indicators: this is achieved with the help of the multifractal formalism which contributes to: (i) establishing a general connection between the positive Lyapunov exponents and the Kolmogorov-Sinai entropy; (ii) identifying and quantifying deviations from a purely hyperbolic dynamics; (iii) characterizing anomalous bifurcations, where the attractor looses progressively its stability. In the context of spatially extended dynamical systems, the study of Lyapunov exponent fluctuations leads to a non conventional assessment of the extensivity of the resulting dynamics. Finally, a careful study of the fluctuations allows clarifying the odd phenomenon of “stable chaos”, where an irregular dynamics is accompanied by a negative (average) Lyapunov exponent. More... »

PAGES

243-261

References to SciGraph publications

Book

TITLE

Large Deviations in Physics

ISBN

978-3-642-54250-3
978-3-642-54251-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-54251-0_9

DOI

http://dx.doi.org/10.1007/978-3-642-54251-0_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009660209


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Aberdeen", 
          "id": "https://www.grid.ac/institutes/grid.7107.1", 
          "name": [
            "Institute for Complex Systems and Mathematical Biology, Kings College, University of Aberdeen, Aberdeen, AB24 3UE, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Politi", 
        "givenName": "Antonio", 
        "id": "sg:person.013264105675.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264105675.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0375-9601(85)90016-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000758120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(85)90016-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000758120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(90)90283-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007019090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(90)90283-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007019090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01015324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012649108", 
          "https://doi.org/10.1007/bf01015324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.114101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016067748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.114101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016067748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(94)90947-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019907466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(94)90947-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019907466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.2694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031383800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.2694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031383800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.130601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047708067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.130601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047708067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.036203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049776572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.036203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049776572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1977v032n04abeh001639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058194255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-8949/40/3/016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058999141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/17/18/021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059067122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/24/19/022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059071824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/9/6/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059111045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.35.1288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060475546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.35.1288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060475546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.55.601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.55.601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218127492000446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062957824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptp.70.1264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063139190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4249/scholarpedia.1815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072401115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4249/scholarpedia.2034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072401159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511803260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098677710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511617546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098679424"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "The unavoidable presence of inhomogeneities in the phase space of a chaotic system induces fluctuations in the degree of stability, even when long trajectories are considered. The characterization of such fluctuations requires to go beyond average indicators: this is achieved with the help of the multifractal formalism which contributes to: (i) establishing a general connection between the positive Lyapunov exponents and the Kolmogorov-Sinai entropy; (ii) identifying and quantifying deviations from a purely hyperbolic dynamics; (iii) characterizing anomalous bifurcations, where the attractor looses progressively its stability. In the context of spatially extended dynamical systems, the study of Lyapunov exponent fluctuations leads to a non conventional assessment of the extensivity of the resulting dynamics. Finally, a careful study of the fluctuations allows clarifying the odd phenomenon of \u201cstable chaos\u201d, where an irregular dynamics is accompanied by a negative (average) Lyapunov exponent.", 
    "editor": [
      {
        "familyName": "Vulpiani", 
        "givenName": "Angelo", 
        "type": "Person"
      }, 
      {
        "familyName": "Cecconi", 
        "givenName": "Fabio", 
        "type": "Person"
      }, 
      {
        "familyName": "Cencini", 
        "givenName": "Massimo", 
        "type": "Person"
      }, 
      {
        "familyName": "Puglisi", 
        "givenName": "Andrea", 
        "type": "Person"
      }, 
      {
        "familyName": "Vergni", 
        "givenName": "Davide", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-54251-0_9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-54250-3", 
        "978-3-642-54251-0"
      ], 
      "name": "Large Deviations in Physics", 
      "type": "Book"
    }, 
    "name": "Stochastic Fluctuations in Deterministic Systems", 
    "pagination": "243-261", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-54251-0_9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2e04ea0269e96088fdc588462bf6422c38fdfabd7b284e541d2ba8b8c31848af"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009660209"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-54251-0_9", 
      "https://app.dimensions.ai/details/publication/pub.1009660209"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000249.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-54251-0_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54251-0_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54251-0_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54251-0_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54251-0_9'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      23 PREDICATES      48 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-54251-0_9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nca20c8a32ead4d00b3b7be2f35b04fc7
4 schema:citation sg:pub.10.1007/bf01015324
5 https://doi.org/10.1016/0375-9601(85)90016-7
6 https://doi.org/10.1016/0375-9601(90)90283-t
7 https://doi.org/10.1016/0375-9601(94)90947-4
8 https://doi.org/10.1017/cbo9780511617546
9 https://doi.org/10.1017/cbo9780511803260
10 https://doi.org/10.1070/rm1977v032n04abeh001639
11 https://doi.org/10.1088/0031-8949/40/3/016
12 https://doi.org/10.1088/0305-4470/17/18/021
13 https://doi.org/10.1088/0305-4470/24/19/022
14 https://doi.org/10.1088/0951-7715/9/6/014
15 https://doi.org/10.1103/physreva.35.1288
16 https://doi.org/10.1103/physreve.74.036203
17 https://doi.org/10.1103/physrevlett.107.114101
18 https://doi.org/10.1103/physrevlett.74.2694
19 https://doi.org/10.1103/physrevlett.99.130601
20 https://doi.org/10.1103/revmodphys.55.601
21 https://doi.org/10.1142/s0218127492000446
22 https://doi.org/10.1143/ptp.70.1264
23 https://doi.org/10.4249/scholarpedia.1815
24 https://doi.org/10.4249/scholarpedia.2034
25 schema:datePublished 2014
26 schema:datePublishedReg 2014-01-01
27 schema:description The unavoidable presence of inhomogeneities in the phase space of a chaotic system induces fluctuations in the degree of stability, even when long trajectories are considered. The characterization of such fluctuations requires to go beyond average indicators: this is achieved with the help of the multifractal formalism which contributes to: (i) establishing a general connection between the positive Lyapunov exponents and the Kolmogorov-Sinai entropy; (ii) identifying and quantifying deviations from a purely hyperbolic dynamics; (iii) characterizing anomalous bifurcations, where the attractor looses progressively its stability. In the context of spatially extended dynamical systems, the study of Lyapunov exponent fluctuations leads to a non conventional assessment of the extensivity of the resulting dynamics. Finally, a careful study of the fluctuations allows clarifying the odd phenomenon of “stable chaos”, where an irregular dynamics is accompanied by a negative (average) Lyapunov exponent.
28 schema:editor N5f12db4af6e3428da49f10b0d7b6cd93
29 schema:genre chapter
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N4ae3200c9a984c12854ffcb2b4e09300
33 schema:name Stochastic Fluctuations in Deterministic Systems
34 schema:pagination 243-261
35 schema:productId N00247f9e8caa47a7861e8dc14b6e5ec7
36 N318f317bbcd943bc89f3a2467be3dc6b
37 N82144e08398f4ec7ab6366cbe1206586
38 schema:publisher N70eb837d3b874b1d970184b5bf5b4ae5
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009660209
40 https://doi.org/10.1007/978-3-642-54251-0_9
41 schema:sdDatePublished 2019-04-15T23:50
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N9d18831352b84b27890acd522899cd4f
44 schema:url http://link.springer.com/10.1007/978-3-642-54251-0_9
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N00247f9e8caa47a7861e8dc14b6e5ec7 schema:name dimensions_id
49 schema:value pub.1009660209
50 rdf:type schema:PropertyValue
51 N13c07abfe298495ca3d73e7177716956 rdf:first Nff541d4dd1e8448c9861e139c5d19a21
52 rdf:rest N2fef432348554fff9b452491dd200340
53 N2fef432348554fff9b452491dd200340 rdf:first N45ab5a912452476c8b6c51d9bb75f68c
54 rdf:rest Nc1010a7e10bf49118b444efb941393f4
55 N318f317bbcd943bc89f3a2467be3dc6b schema:name readcube_id
56 schema:value 2e04ea0269e96088fdc588462bf6422c38fdfabd7b284e541d2ba8b8c31848af
57 rdf:type schema:PropertyValue
58 N45ab5a912452476c8b6c51d9bb75f68c schema:familyName Puglisi
59 schema:givenName Andrea
60 rdf:type schema:Person
61 N4ae3200c9a984c12854ffcb2b4e09300 schema:isbn 978-3-642-54250-3
62 978-3-642-54251-0
63 schema:name Large Deviations in Physics
64 rdf:type schema:Book
65 N5f12db4af6e3428da49f10b0d7b6cd93 rdf:first Nfd0c22265d914f599f1c2d19486a0174
66 rdf:rest Nc33015762b184137a9e97417d03bef54
67 N70eb837d3b874b1d970184b5bf5b4ae5 schema:location Berlin, Heidelberg
68 schema:name Springer Berlin Heidelberg
69 rdf:type schema:Organisation
70 N82144e08398f4ec7ab6366cbe1206586 schema:name doi
71 schema:value 10.1007/978-3-642-54251-0_9
72 rdf:type schema:PropertyValue
73 N9d18831352b84b27890acd522899cd4f schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Naf56bb22d2564c12889a952d37bc21b9 schema:familyName Vergni
76 schema:givenName Davide
77 rdf:type schema:Person
78 Nc1010a7e10bf49118b444efb941393f4 rdf:first Naf56bb22d2564c12889a952d37bc21b9
79 rdf:rest rdf:nil
80 Nc33015762b184137a9e97417d03bef54 rdf:first Nf91f618c7dda46fa84a8d8bb443e907f
81 rdf:rest N13c07abfe298495ca3d73e7177716956
82 Nca20c8a32ead4d00b3b7be2f35b04fc7 rdf:first sg:person.013264105675.78
83 rdf:rest rdf:nil
84 Nf91f618c7dda46fa84a8d8bb443e907f schema:familyName Cecconi
85 schema:givenName Fabio
86 rdf:type schema:Person
87 Nfd0c22265d914f599f1c2d19486a0174 schema:familyName Vulpiani
88 schema:givenName Angelo
89 rdf:type schema:Person
90 Nff541d4dd1e8448c9861e139c5d19a21 schema:familyName Cencini
91 schema:givenName Massimo
92 rdf:type schema:Person
93 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
94 schema:name Mathematical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
97 schema:name Pure Mathematics
98 rdf:type schema:DefinedTerm
99 sg:person.013264105675.78 schema:affiliation https://www.grid.ac/institutes/grid.7107.1
100 schema:familyName Politi
101 schema:givenName Antonio
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264105675.78
103 rdf:type schema:Person
104 sg:pub.10.1007/bf01015324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012649108
105 https://doi.org/10.1007/bf01015324
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/0375-9601(85)90016-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000758120
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0375-9601(90)90283-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1007019090
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0375-9601(94)90947-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019907466
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1017/cbo9780511617546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098679424
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1017/cbo9780511803260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098677710
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1070/rm1977v032n04abeh001639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058194255
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1088/0031-8949/40/3/016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058999141
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1088/0305-4470/17/18/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059067122
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1088/0305-4470/24/19/022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059071824
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1088/0951-7715/9/6/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059111045
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physreva.35.1288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060475546
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physreve.74.036203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049776572
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.107.114101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016067748
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevlett.74.2694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031383800
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.99.130601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047708067
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/revmodphys.55.601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839032
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1142/s0218127492000446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062957824
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1143/ptp.70.1264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063139190
142 rdf:type schema:CreativeWork
143 https://doi.org/10.4249/scholarpedia.1815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072401115
144 rdf:type schema:CreativeWork
145 https://doi.org/10.4249/scholarpedia.2034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072401159
146 rdf:type schema:CreativeWork
147 https://www.grid.ac/institutes/grid.7107.1 schema:alternateName University of Aberdeen
148 schema:name Institute for Complex Systems and Mathematical Biology, Kings College, University of Aberdeen, Aberdeen, AB24 3UE, UK
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...