# Obfuscation for Evasive Functions

Ontology type: schema:Chapter      Open Access: True

### Chapter Info

DATE

2014

AUTHORS ABSTRACT

An evasive circuit family is a collection of circuits \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document} such that for every input x, a random circuit from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document} outputs 0 on x with overwhelming probability. We provide a combination of definitional, constructive, and impossibility results regarding obfuscation for evasive functions:The (average case variants of the) notions of virtual black box obfuscation (Barak et al, CRYPTO ’01) and virtual gray box obfuscation (Bitansky and Canetti, CRYPTO ’10) coincide for evasive function families. We also define the notion of input-hiding obfuscation for evasive function families, stipulating that for a random \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C \in{\mathcal{C}}$\end{document} it is hard to find, given \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(C)$\end{document}, a value outside the preimage of 0. Interestingly, this natural definition, also motivated by applications, is likely not implied by the seemingly stronger notion of average-case virtual black-box obfuscation.If there exist average-case virtual gray box obfuscators for all evasive function families, then there exist (quantitatively weaker) average-case virtual gray obfuscators for all function families.There does not exist a worst-case virtual black box obfuscator even for evasive circuits, nor is there an average-case virtual gray box obfuscator for evasive Turing machine families.Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document} be an evasive circuit family consisting of functions that test if a low-degree polynomial (represented by an efficient arithmetic circuit) evaluates to zero modulo some large prime p. Then under a natural analog of the discrete logarithm assumption in a group supporting multilinear maps, there exists an input-hiding obfuscator for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document}. Under a new perfectly-hiding multilinear encoding assumption, there is an average-case virtual black box obfuscator for the family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document}. More... »

PAGES

26-51

### Book

TITLE

Theory of Cryptography

ISBN

978-3-642-54241-1
978-3-642-54242-8

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-54242-8_2

DOI

http://dx.doi.org/10.1007/978-3-642-54242-8_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009881425

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology and Cognitive Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Microsoft Research, USA",
"id": "http://www.grid.ac/institutes/grid.419815.0",
"name": [
"Microsoft Research, USA"
],
"type": "Organization"
},
"familyName": "Barak",
"givenName": "Boaz",
"id": "sg:person.01253774424.97",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253774424.97"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Tel Aviv University, Israel",
"id": "http://www.grid.ac/institutes/grid.12136.37",
"name": [
"Tel Aviv University, Israel"
],
"type": "Organization"
},
"familyName": "Bitansky",
"givenName": "Nir",
"id": "sg:person.016302552357.74",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016302552357.74"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Boston University, USA",
"id": "http://www.grid.ac/institutes/grid.189504.1",
"name": [
"Tel Aviv University, Israel",
"Boston University, USA"
],
"type": "Organization"
},
"familyName": "Canetti",
"givenName": "Ran",
"id": "sg:person.012320111457.74",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012320111457.74"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Microsoft Research, USA",
"id": "http://www.grid.ac/institutes/grid.419815.0",
"name": [
"Microsoft Research, USA"
],
"type": "Organization"
},
"familyName": "Kalai",
"givenName": "Yael Tauman",
"id": "sg:person.015074540743.62",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015074540743.62"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Boston University, USA",
"id": "http://www.grid.ac/institutes/grid.189504.1",
"name": [
"Boston University, USA"
],
"type": "Organization"
},
"familyName": "Paneth",
"givenName": "Omer",
"id": "sg:person.014073524511.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073524511.68"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "UCLA, USA",
"id": "http://www.grid.ac/institutes/grid.19006.3e",
"name": [
"UCLA, USA"
],
"type": "Organization"
},
"familyName": "Sahai",
"givenName": "Amit",
"id": "sg:person.014324616157.64",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014324616157.64"
],
"type": "Person"
}
],
"datePublished": "2014",
"datePublishedReg": "2014-01-01",
"description": "An evasive circuit family is a collection of circuits \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{C}$\\end{document} such that for every input x, a random circuit from \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{C}$\\end{document} outputs 0 on x with overwhelming probability. We provide a combination of definitional, constructive, and impossibility results regarding obfuscation for evasive functions:The (average case variants of the) notions of virtual black box obfuscation (Barak et al, CRYPTO \u201901) and virtual gray box obfuscation (Bitansky and Canetti, CRYPTO \u201910) coincide for evasive function families. We also define the notion of input-hiding obfuscation for evasive function families, stipulating that for a random \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$C \\in{\\mathcal{C}}$\\end{document} it is hard to find, given \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{O}(C)$\\end{document}, a value outside the preimage of 0. Interestingly, this natural definition, also motivated by applications, is likely not implied by the seemingly stronger notion of average-case virtual black-box obfuscation.If there exist average-case virtual gray box obfuscators for all evasive function families, then there exist (quantitatively weaker) average-case virtual gray obfuscators for all function families.There does not exist a worst-case virtual black box obfuscator even for evasive circuits, nor is there an average-case virtual gray box obfuscator for evasive Turing machine families.Let \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{C}$\\end{document} be an evasive circuit family consisting of functions that test if a low-degree polynomial (represented by an efficient arithmetic circuit) evaluates to zero modulo some large prime p. Then under a natural analog of the discrete logarithm assumption in a group supporting multilinear maps, there exists an input-hiding obfuscator for \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{C}$\\end{document}. Under a new perfectly-hiding multilinear encoding assumption, there is an average-case virtual black box obfuscator for the family \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{C}$\\end{document}.",
"editor": [
{
"familyName": "Lindell",
"givenName": "Yehuda",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-54242-8_2",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-642-54241-1",
"978-3-642-54242-8"
],
"name": "Theory of Cryptography",
"type": "Book"
},
"keywords": [
"evasive functions",
"family",
"collection of circuits",
"function",
"group",
"collection",
"combination",
"results",
"analogues",
"circuit",
"probability",
"notion",
"virtual black box obfuscation",
"values",
"definition",
"input x",
"overwhelming probability",
"impossibility results",
"obfuscation",
"coincide",
"function family",
"applications",
"stronger notion",
"obfuscator",
"machine family",
"low-degree polynomials",
"natural analogues",
"discrete logarithm assumption",
"assumption",
"multilinear maps",
"maps",
"circuit family",
"random circuits",
"preimage",
"natural definition",
"polynomials"
],
"name": "Obfuscation for Evasive Functions",
"pagination": "26-51",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1009881425"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-54242-8_2"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-54242-8_2",
"https://app.dimensions.ai/details/publication/pub.1009881425"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:33",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_345.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-54242-8_2"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54242-8_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54242-8_2'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54242-8_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54242-8_2'

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      23 PREDICATES      62 URIs      55 LITERALS      7 BLANK NODES

Subject Predicate Object
2 anzsrc-for:1701
3 schema:author N5f4321193db74e578b3f7caa9f51fb8d
4 schema:datePublished 2014
5 schema:datePublishedReg 2014-01-01
6 schema:description An evasive circuit family is a collection of circuits \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document} such that for every input x, a random circuit from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document} outputs 0 on x with overwhelming probability. We provide a combination of definitional, constructive, and impossibility results regarding obfuscation for evasive functions:The (average case variants of the) notions of virtual black box obfuscation (Barak et al, CRYPTO ’01) and virtual gray box obfuscation (Bitansky and Canetti, CRYPTO ’10) coincide for evasive function families. We also define the notion of input-hiding obfuscation for evasive function families, stipulating that for a random \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C \in{\mathcal{C}}$\end{document} it is hard to find, given \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(C)$\end{document}, a value outside the preimage of 0. Interestingly, this natural definition, also motivated by applications, is likely not implied by the seemingly stronger notion of average-case virtual black-box obfuscation.If there exist average-case virtual gray box obfuscators for all evasive function families, then there exist (quantitatively weaker) average-case virtual gray obfuscators for all function families.There does not exist a worst-case virtual black box obfuscator even for evasive circuits, nor is there an average-case virtual gray box obfuscator for evasive Turing machine families.Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document} be an evasive circuit family consisting of functions that test if a low-degree polynomial (represented by an efficient arithmetic circuit) evaluates to zero modulo some large prime p. Then under a natural analog of the discrete logarithm assumption in a group supporting multilinear maps, there exists an input-hiding obfuscator for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document}. Under a new perfectly-hiding multilinear encoding assumption, there is an average-case virtual black box obfuscator for the family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document}.
7 schema:editor N1ef08b20bf6e48fa9f1e15eaf46f076f
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N5d3caa3d2434459b864865224c839514
12 schema:keywords analogues
13 applications
14 assumption
15 circuit
16 circuit family
17 coincide
18 collection
19 collection of circuits
20 combination
21 definition
22 discrete logarithm assumption
23 evasive functions
24 family
25 function
26 function family
27 group
28 impossibility results
29 input x
30 low-degree polynomials
31 machine family
32 maps
33 multilinear maps
34 natural analogues
35 natural definition
36 notion
37 obfuscation
38 obfuscator
39 overwhelming probability
40 polynomials
41 preimage
42 probability
43 random circuits
44 results
45 stronger notion
46 values
47 virtual black box obfuscation
48 schema:name Obfuscation for Evasive Functions
49 schema:pagination 26-51
50 schema:productId N6e5782a0804a44459873f2f20e29fa52
51 Nd1005b5fedfe4d1b893657ed3a860f8b
52 schema:publisher Nd4a01eb9e01248faba33b044d3c80569
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009881425
54 https://doi.org/10.1007/978-3-642-54242-8_2
55 schema:sdDatePublished 2022-06-01T22:33
57 schema:sdPublisher N0e682fcf607f4f058881eb16b882db32
58 schema:url https://doi.org/10.1007/978-3-642-54242-8_2
60 sgo:sdDataset chapters
61 rdf:type schema:Chapter
62 N0e682fcf607f4f058881eb16b882db32 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N1ef08b20bf6e48fa9f1e15eaf46f076f rdf:first Nd55be94675dc4064acc53f6bd06d1fb4
65 rdf:rest rdf:nil
66 N5d3caa3d2434459b864865224c839514 schema:isbn 978-3-642-54241-1
67 978-3-642-54242-8
68 schema:name Theory of Cryptography
69 rdf:type schema:Book
70 N5f4321193db74e578b3f7caa9f51fb8d rdf:first sg:person.01253774424.97
71 rdf:rest N9fe6ab479ef1491a86786c551b067ec6
72 N6e5782a0804a44459873f2f20e29fa52 schema:name doi
73 schema:value 10.1007/978-3-642-54242-8_2
74 rdf:type schema:PropertyValue
75 N77ffc024de1d458ba03e75bf0a55d6e4 rdf:first sg:person.014324616157.64
76 rdf:rest rdf:nil
77 N92ddc740ba5f4d7f9f76d6b851aa3167 rdf:first sg:person.012320111457.74
78 rdf:rest Nf92243dd375a451fb56c6150cb083792
79 N9fe6ab479ef1491a86786c551b067ec6 rdf:first sg:person.016302552357.74
80 rdf:rest N92ddc740ba5f4d7f9f76d6b851aa3167
81 Nc3c638cc414043b1a0f88c51d5108184 rdf:first sg:person.014073524511.68
82 rdf:rest N77ffc024de1d458ba03e75bf0a55d6e4
83 Nd1005b5fedfe4d1b893657ed3a860f8b schema:name dimensions_id
84 schema:value pub.1009881425
85 rdf:type schema:PropertyValue
86 Nd4a01eb9e01248faba33b044d3c80569 schema:name Springer Nature
87 rdf:type schema:Organisation
88 Nd55be94675dc4064acc53f6bd06d1fb4 schema:familyName Lindell
89 schema:givenName Yehuda
90 rdf:type schema:Person
91 Nf92243dd375a451fb56c6150cb083792 rdf:first sg:person.015074540743.62
92 rdf:rest Nc3c638cc414043b1a0f88c51d5108184
93 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
94 schema:name Psychology and Cognitive Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
97 schema:name Psychology
98 rdf:type schema:DefinedTerm
99 sg:person.012320111457.74 schema:affiliation grid-institutes:grid.189504.1
100 schema:familyName Canetti
101 schema:givenName Ran
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012320111457.74
103 rdf:type schema:Person
104 sg:person.01253774424.97 schema:affiliation grid-institutes:grid.419815.0
105 schema:familyName Barak
106 schema:givenName Boaz
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253774424.97
108 rdf:type schema:Person
109 sg:person.014073524511.68 schema:affiliation grid-institutes:grid.189504.1
110 schema:familyName Paneth
111 schema:givenName Omer
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073524511.68
113 rdf:type schema:Person
114 sg:person.014324616157.64 schema:affiliation grid-institutes:grid.19006.3e
115 schema:familyName Sahai
116 schema:givenName Amit
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014324616157.64
118 rdf:type schema:Person
119 sg:person.015074540743.62 schema:affiliation grid-institutes:grid.419815.0
120 schema:familyName Kalai
121 schema:givenName Yael Tauman
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015074540743.62
123 rdf:type schema:Person
124 sg:person.016302552357.74 schema:affiliation grid-institutes:grid.12136.37
125 schema:familyName Bitansky
126 schema:givenName Nir
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016302552357.74
128 rdf:type schema:Person
129 grid-institutes:grid.12136.37 schema:alternateName Tel Aviv University, Israel
130 schema:name Tel Aviv University, Israel
131 rdf:type schema:Organization
132 grid-institutes:grid.189504.1 schema:alternateName Boston University, USA
133 schema:name Boston University, USA
134 Tel Aviv University, Israel
135 rdf:type schema:Organization
136 grid-institutes:grid.19006.3e schema:alternateName UCLA, USA
137 schema:name UCLA, USA
138 rdf:type schema:Organization
139 grid-institutes:grid.419815.0 schema:alternateName Microsoft Research, USA
140 schema:name Microsoft Research, USA
141 rdf:type schema:Organization