2014
AUTHORSBoaz Barak , Nir Bitansky , Ran Canetti , Yael Tauman Kalai , Omer Paneth , Amit Sahai
ABSTRACTAn evasive circuit family is a collection of circuits \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document} such that for every input x, a random circuit from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document} outputs 0 on x with overwhelming probability. We provide a combination of definitional, constructive, and impossibility results regarding obfuscation for evasive functions:The (average case variants of the) notions of virtual black box obfuscation (Barak et al, CRYPTO ’01) and virtual gray box obfuscation (Bitansky and Canetti, CRYPTO ’10) coincide for evasive function families. We also define the notion of input-hiding obfuscation for evasive function families, stipulating that for a random \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C \in{\mathcal{C}}$\end{document} it is hard to find, given \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(C)$\end{document}, a value outside the preimage of 0. Interestingly, this natural definition, also motivated by applications, is likely not implied by the seemingly stronger notion of average-case virtual black-box obfuscation.If there exist average-case virtual gray box obfuscators for all evasive function families, then there exist (quantitatively weaker) average-case virtual gray obfuscators for all function families.There does not exist a worst-case virtual black box obfuscator even for evasive circuits, nor is there an average-case virtual gray box obfuscator for evasive Turing machine families.Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document} be an evasive circuit family consisting of functions that test if a low-degree polynomial (represented by an efficient arithmetic circuit) evaluates to zero modulo some large prime p. Then under a natural analog of the discrete logarithm assumption in a group supporting multilinear maps, there exists an input-hiding obfuscator for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document}. Under a new perfectly-hiding multilinear encoding assumption, there is an average-case virtual black box obfuscator for the family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document}. More... »
PAGES26-51
Theory of Cryptography
ISBN
978-3-642-54241-1
978-3-642-54242-8
http://scigraph.springernature.com/pub.10.1007/978-3-642-54242-8_2
DOIhttp://dx.doi.org/10.1007/978-3-642-54242-8_2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1009881425
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology and Cognitive Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Microsoft Research, USA",
"id": "http://www.grid.ac/institutes/grid.419815.0",
"name": [
"Microsoft Research, USA"
],
"type": "Organization"
},
"familyName": "Barak",
"givenName": "Boaz",
"id": "sg:person.01253774424.97",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253774424.97"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Tel Aviv University, Israel",
"id": "http://www.grid.ac/institutes/grid.12136.37",
"name": [
"Tel Aviv University, Israel"
],
"type": "Organization"
},
"familyName": "Bitansky",
"givenName": "Nir",
"id": "sg:person.016302552357.74",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016302552357.74"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Boston University, USA",
"id": "http://www.grid.ac/institutes/grid.189504.1",
"name": [
"Tel Aviv University, Israel",
"Boston University, USA"
],
"type": "Organization"
},
"familyName": "Canetti",
"givenName": "Ran",
"id": "sg:person.012320111457.74",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012320111457.74"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Microsoft Research, USA",
"id": "http://www.grid.ac/institutes/grid.419815.0",
"name": [
"Microsoft Research, USA"
],
"type": "Organization"
},
"familyName": "Kalai",
"givenName": "Yael Tauman",
"id": "sg:person.015074540743.62",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015074540743.62"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Boston University, USA",
"id": "http://www.grid.ac/institutes/grid.189504.1",
"name": [
"Boston University, USA"
],
"type": "Organization"
},
"familyName": "Paneth",
"givenName": "Omer",
"id": "sg:person.014073524511.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073524511.68"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "UCLA, USA",
"id": "http://www.grid.ac/institutes/grid.19006.3e",
"name": [
"UCLA, USA"
],
"type": "Organization"
},
"familyName": "Sahai",
"givenName": "Amit",
"id": "sg:person.014324616157.64",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014324616157.64"
],
"type": "Person"
}
],
"datePublished": "2014",
"datePublishedReg": "2014-01-01",
"description": "An evasive circuit family is a collection of circuits \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{C}$\\end{document} such that for every input x, a random circuit from \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{C}$\\end{document} outputs 0 on x with overwhelming probability. We provide a combination of definitional, constructive, and impossibility results regarding obfuscation for evasive functions:The (average case variants of the) notions of virtual black box obfuscation (Barak et al, CRYPTO \u201901) and virtual gray box obfuscation (Bitansky and Canetti, CRYPTO \u201910) coincide for evasive function families. We also define the notion of input-hiding obfuscation for evasive function families, stipulating that for a random \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$C \\in{\\mathcal{C}}$\\end{document} it is hard to find, given \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{O}(C)$\\end{document}, a value outside the preimage of 0. Interestingly, this natural definition, also motivated by applications, is likely not implied by the seemingly stronger notion of average-case virtual black-box obfuscation.If there exist average-case virtual gray box obfuscators for all evasive function families, then there exist (quantitatively weaker) average-case virtual gray obfuscators for all function families.There does not exist a worst-case virtual black box obfuscator even for evasive circuits, nor is there an average-case virtual gray box obfuscator for evasive Turing machine families.Let \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{C}$\\end{document} be an evasive circuit family consisting of functions that test if a low-degree polynomial (represented by an efficient arithmetic circuit) evaluates to zero modulo some large prime p. Then under a natural analog of the discrete logarithm assumption in a group supporting multilinear maps, there exists an input-hiding obfuscator for \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{C}$\\end{document}. Under a new perfectly-hiding multilinear encoding assumption, there is an average-case virtual black box obfuscator for the family \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{C}$\\end{document}.",
"editor": [
{
"familyName": "Lindell",
"givenName": "Yehuda",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-54242-8_2",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-642-54241-1",
"978-3-642-54242-8"
],
"name": "Theory of Cryptography",
"type": "Book"
},
"keywords": [
"evasive functions",
"family",
"collection of circuits",
"function",
"group",
"collection",
"combination",
"results",
"analogues",
"circuit",
"probability",
"notion",
"virtual black box obfuscation",
"values",
"definition",
"input x",
"overwhelming probability",
"impossibility results",
"obfuscation",
"coincide",
"function family",
"applications",
"stronger notion",
"obfuscator",
"machine family",
"low-degree polynomials",
"natural analogues",
"discrete logarithm assumption",
"assumption",
"multilinear maps",
"maps",
"circuit family",
"random circuits",
"preimage",
"natural definition",
"polynomials"
],
"name": "Obfuscation for Evasive Functions",
"pagination": "26-51",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1009881425"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-54242-8_2"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-54242-8_2",
"https://app.dimensions.ai/details/publication/pub.1009881425"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:33",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_345.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-54242-8_2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54242-8_2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54242-8_2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54242-8_2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54242-8_2'
This table displays all metadata directly associated to this object as RDF triples.
141 TRIPLES
23 PREDICATES
62 URIs
55 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-54242-8_2 | schema:about | anzsrc-for:17 |
2 | ″ | ″ | anzsrc-for:1701 |
3 | ″ | schema:author | N5f4321193db74e578b3f7caa9f51fb8d |
4 | ″ | schema:datePublished | 2014 |
5 | ″ | schema:datePublishedReg | 2014-01-01 |
6 | ″ | schema:description | An evasive circuit family is a collection of circuits \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document} such that for every input x, a random circuit from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document} outputs 0 on x with overwhelming probability. We provide a combination of definitional, constructive, and impossibility results regarding obfuscation for evasive functions:The (average case variants of the) notions of virtual black box obfuscation (Barak et al, CRYPTO ’01) and virtual gray box obfuscation (Bitansky and Canetti, CRYPTO ’10) coincide for evasive function families. We also define the notion of input-hiding obfuscation for evasive function families, stipulating that for a random \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C \in{\mathcal{C}}$\end{document} it is hard to find, given \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(C)$\end{document}, a value outside the preimage of 0. Interestingly, this natural definition, also motivated by applications, is likely not implied by the seemingly stronger notion of average-case virtual black-box obfuscation.If there exist average-case virtual gray box obfuscators for all evasive function families, then there exist (quantitatively weaker) average-case virtual gray obfuscators for all function families.There does not exist a worst-case virtual black box obfuscator even for evasive circuits, nor is there an average-case virtual gray box obfuscator for evasive Turing machine families.Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document} be an evasive circuit family consisting of functions that test if a low-degree polynomial (represented by an efficient arithmetic circuit) evaluates to zero modulo some large prime p. Then under a natural analog of the discrete logarithm assumption in a group supporting multilinear maps, there exists an input-hiding obfuscator for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document}. Under a new perfectly-hiding multilinear encoding assumption, there is an average-case virtual black box obfuscator for the family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document}. |
7 | ″ | schema:editor | N1ef08b20bf6e48fa9f1e15eaf46f076f |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | N5d3caa3d2434459b864865224c839514 |
12 | ″ | schema:keywords | analogues |
13 | ″ | ″ | applications |
14 | ″ | ″ | assumption |
15 | ″ | ″ | circuit |
16 | ″ | ″ | circuit family |
17 | ″ | ″ | coincide |
18 | ″ | ″ | collection |
19 | ″ | ″ | collection of circuits |
20 | ″ | ″ | combination |
21 | ″ | ″ | definition |
22 | ″ | ″ | discrete logarithm assumption |
23 | ″ | ″ | evasive functions |
24 | ″ | ″ | family |
25 | ″ | ″ | function |
26 | ″ | ″ | function family |
27 | ″ | ″ | group |
28 | ″ | ″ | impossibility results |
29 | ″ | ″ | input x |
30 | ″ | ″ | low-degree polynomials |
31 | ″ | ″ | machine family |
32 | ″ | ″ | maps |
33 | ″ | ″ | multilinear maps |
34 | ″ | ″ | natural analogues |
35 | ″ | ″ | natural definition |
36 | ″ | ″ | notion |
37 | ″ | ″ | obfuscation |
38 | ″ | ″ | obfuscator |
39 | ″ | ″ | overwhelming probability |
40 | ″ | ″ | polynomials |
41 | ″ | ″ | preimage |
42 | ″ | ″ | probability |
43 | ″ | ″ | random circuits |
44 | ″ | ″ | results |
45 | ″ | ″ | stronger notion |
46 | ″ | ″ | values |
47 | ″ | ″ | virtual black box obfuscation |
48 | ″ | schema:name | Obfuscation for Evasive Functions |
49 | ″ | schema:pagination | 26-51 |
50 | ″ | schema:productId | N6e5782a0804a44459873f2f20e29fa52 |
51 | ″ | ″ | Nd1005b5fedfe4d1b893657ed3a860f8b |
52 | ″ | schema:publisher | Nd4a01eb9e01248faba33b044d3c80569 |
53 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1009881425 |
54 | ″ | ″ | https://doi.org/10.1007/978-3-642-54242-8_2 |
55 | ″ | schema:sdDatePublished | 2022-06-01T22:33 |
56 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
57 | ″ | schema:sdPublisher | N0e682fcf607f4f058881eb16b882db32 |
58 | ″ | schema:url | https://doi.org/10.1007/978-3-642-54242-8_2 |
59 | ″ | sgo:license | sg:explorer/license/ |
60 | ″ | sgo:sdDataset | chapters |
61 | ″ | rdf:type | schema:Chapter |
62 | N0e682fcf607f4f058881eb16b882db32 | schema:name | Springer Nature - SN SciGraph project |
63 | ″ | rdf:type | schema:Organization |
64 | N1ef08b20bf6e48fa9f1e15eaf46f076f | rdf:first | Nd55be94675dc4064acc53f6bd06d1fb4 |
65 | ″ | rdf:rest | rdf:nil |
66 | N5d3caa3d2434459b864865224c839514 | schema:isbn | 978-3-642-54241-1 |
67 | ″ | ″ | 978-3-642-54242-8 |
68 | ″ | schema:name | Theory of Cryptography |
69 | ″ | rdf:type | schema:Book |
70 | N5f4321193db74e578b3f7caa9f51fb8d | rdf:first | sg:person.01253774424.97 |
71 | ″ | rdf:rest | N9fe6ab479ef1491a86786c551b067ec6 |
72 | N6e5782a0804a44459873f2f20e29fa52 | schema:name | doi |
73 | ″ | schema:value | 10.1007/978-3-642-54242-8_2 |
74 | ″ | rdf:type | schema:PropertyValue |
75 | N77ffc024de1d458ba03e75bf0a55d6e4 | rdf:first | sg:person.014324616157.64 |
76 | ″ | rdf:rest | rdf:nil |
77 | N92ddc740ba5f4d7f9f76d6b851aa3167 | rdf:first | sg:person.012320111457.74 |
78 | ″ | rdf:rest | Nf92243dd375a451fb56c6150cb083792 |
79 | N9fe6ab479ef1491a86786c551b067ec6 | rdf:first | sg:person.016302552357.74 |
80 | ″ | rdf:rest | N92ddc740ba5f4d7f9f76d6b851aa3167 |
81 | Nc3c638cc414043b1a0f88c51d5108184 | rdf:first | sg:person.014073524511.68 |
82 | ″ | rdf:rest | N77ffc024de1d458ba03e75bf0a55d6e4 |
83 | Nd1005b5fedfe4d1b893657ed3a860f8b | schema:name | dimensions_id |
84 | ″ | schema:value | pub.1009881425 |
85 | ″ | rdf:type | schema:PropertyValue |
86 | Nd4a01eb9e01248faba33b044d3c80569 | schema:name | Springer Nature |
87 | ″ | rdf:type | schema:Organisation |
88 | Nd55be94675dc4064acc53f6bd06d1fb4 | schema:familyName | Lindell |
89 | ″ | schema:givenName | Yehuda |
90 | ″ | rdf:type | schema:Person |
91 | Nf92243dd375a451fb56c6150cb083792 | rdf:first | sg:person.015074540743.62 |
92 | ″ | rdf:rest | Nc3c638cc414043b1a0f88c51d5108184 |
93 | anzsrc-for:17 | schema:inDefinedTermSet | anzsrc-for: |
94 | ″ | schema:name | Psychology and Cognitive Sciences |
95 | ″ | rdf:type | schema:DefinedTerm |
96 | anzsrc-for:1701 | schema:inDefinedTermSet | anzsrc-for: |
97 | ″ | schema:name | Psychology |
98 | ″ | rdf:type | schema:DefinedTerm |
99 | sg:person.012320111457.74 | schema:affiliation | grid-institutes:grid.189504.1 |
100 | ″ | schema:familyName | Canetti |
101 | ″ | schema:givenName | Ran |
102 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012320111457.74 |
103 | ″ | rdf:type | schema:Person |
104 | sg:person.01253774424.97 | schema:affiliation | grid-institutes:grid.419815.0 |
105 | ″ | schema:familyName | Barak |
106 | ″ | schema:givenName | Boaz |
107 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253774424.97 |
108 | ″ | rdf:type | schema:Person |
109 | sg:person.014073524511.68 | schema:affiliation | grid-institutes:grid.189504.1 |
110 | ″ | schema:familyName | Paneth |
111 | ″ | schema:givenName | Omer |
112 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073524511.68 |
113 | ″ | rdf:type | schema:Person |
114 | sg:person.014324616157.64 | schema:affiliation | grid-institutes:grid.19006.3e |
115 | ″ | schema:familyName | Sahai |
116 | ″ | schema:givenName | Amit |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014324616157.64 |
118 | ″ | rdf:type | schema:Person |
119 | sg:person.015074540743.62 | schema:affiliation | grid-institutes:grid.419815.0 |
120 | ″ | schema:familyName | Kalai |
121 | ″ | schema:givenName | Yael Tauman |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015074540743.62 |
123 | ″ | rdf:type | schema:Person |
124 | sg:person.016302552357.74 | schema:affiliation | grid-institutes:grid.12136.37 |
125 | ″ | schema:familyName | Bitansky |
126 | ″ | schema:givenName | Nir |
127 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016302552357.74 |
128 | ″ | rdf:type | schema:Person |
129 | grid-institutes:grid.12136.37 | schema:alternateName | Tel Aviv University, Israel |
130 | ″ | schema:name | Tel Aviv University, Israel |
131 | ″ | rdf:type | schema:Organization |
132 | grid-institutes:grid.189504.1 | schema:alternateName | Boston University, USA |
133 | ″ | schema:name | Boston University, USA |
134 | ″ | ″ | Tel Aviv University, Israel |
135 | ″ | rdf:type | schema:Organization |
136 | grid-institutes:grid.19006.3e | schema:alternateName | UCLA, USA |
137 | ″ | schema:name | UCLA, USA |
138 | ″ | rdf:type | schema:Organization |
139 | grid-institutes:grid.419815.0 | schema:alternateName | Microsoft Research, USA |
140 | ″ | schema:name | Microsoft Research, USA |
141 | ″ | rdf:type | schema:Organization |