A Self-organising Approach for Smart Meter Communication Systems View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Markus Gerhard Tauber , Florian Skopik , Thomas Bleier , David Hutchison

ABSTRACT

Future energy grids will need to cope with a multitude of new, dynamic situations. Having sufficient information about energy usage patterns is of paramount importance for the grid to react to changing situations and to make the grid ‘smart’. We present preliminary results from an investigation on whether autonomic adaptation of intervals with which individual smart meters report their meter readings can be more effective than commonly used static configurations. A small reporting interval provides close to real-time knowledge about load changes and thus gives the opportunity to balance the energy demand amongst consumers rather than ‘burning’ surplus capacities. On the other hand, a small interval results in a waste of processing power and bandwidth in case of customers that have rather static energy usage behaviour. Hence, an ideal interval cannot be predicted a priori, but needs to be adapted dynamically.We provide an analytical investigation of the effects of autonomic management of smart meter reading intervals, and we make some recommendations on how this scheme can be implemented. More... »

PAGES

169-175

Book

TITLE

Self-Organizing Systems

ISBN

978-3-642-54139-1
978-3-642-54140-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-54140-7_17

DOI

http://dx.doi.org/10.1007/978-3-642-54140-7_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044785620


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "AIT, Austrian Institute of Technology, Austria", 
          "id": "http://www.grid.ac/institutes/grid.4332.6", 
          "name": [
            "AIT, Austrian Institute of Technology, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tauber", 
        "givenName": "Markus Gerhard", 
        "id": "sg:person.011547453365.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011547453365.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AIT, Austrian Institute of Technology, Austria", 
          "id": "http://www.grid.ac/institutes/grid.4332.6", 
          "name": [
            "AIT, Austrian Institute of Technology, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skopik", 
        "givenName": "Florian", 
        "id": "sg:person.015421471511.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015421471511.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AIT, Austrian Institute of Technology, Austria", 
          "id": "http://www.grid.ac/institutes/grid.4332.6", 
          "name": [
            "AIT, Austrian Institute of Technology, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bleier", 
        "givenName": "Thomas", 
        "id": "sg:person.014533750563.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014533750563.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lancaster University, UK", 
          "id": "http://www.grid.ac/institutes/grid.9835.7", 
          "name": [
            "Lancaster University, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hutchison", 
        "givenName": "David", 
        "id": "sg:person.012636622347.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012636622347.55"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Future energy grids will need to cope with a multitude of new, dynamic situations. Having sufficient information about energy usage patterns is of paramount importance for the grid to react to changing situations and to make the grid \u2018smart\u2019. We present preliminary results from an investigation on whether autonomic adaptation of intervals with which individual smart meters report their meter readings can be more effective than commonly used static configurations. A small reporting interval provides close to real-time knowledge about load changes and thus gives the opportunity to balance the energy demand amongst consumers rather than \u2018burning\u2019 surplus capacities. On the other hand, a small interval results in a waste of processing power and bandwidth in case of customers that have rather static energy usage behaviour. Hence, an ideal interval cannot be predicted a priori, but needs to be adapted dynamically.We provide an analytical investigation of the effects of autonomic management of smart meter reading intervals, and we make some recommendations on how this scheme can be implemented.", 
    "editor": [
      {
        "familyName": "Elmenreich", 
        "givenName": "Wilfried", 
        "type": "Person"
      }, 
      {
        "familyName": "Dressler", 
        "givenName": "Falko", 
        "type": "Person"
      }, 
      {
        "familyName": "Loreto", 
        "givenName": "Vittorio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-54140-7_17", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-54139-1", 
        "978-3-642-54140-7"
      ], 
      "name": "Self-Organizing Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "self-organising approach", 
      "future energy grids", 
      "individual smart meters", 
      "real-time knowledge", 
      "autonomic management", 
      "processing power", 
      "smart meters", 
      "energy usage patterns", 
      "energy usage behavior", 
      "usage behavior", 
      "energy grid", 
      "dynamic situations", 
      "communication systems", 
      "usage patterns", 
      "meter readings", 
      "static configuration", 
      "grid", 
      "autonomic adaptations", 
      "case of customers", 
      "sufficient information", 
      "load changes", 
      "paramount importance", 
      "preliminary results", 
      "reporting intervals", 
      "scheme", 
      "customers", 
      "bandwidth", 
      "information", 
      "situation", 
      "system", 
      "surplus capacity", 
      "demand", 
      "multitude", 
      "interval results", 
      "knowledge", 
      "management", 
      "results", 
      "adaptation", 
      "configuration", 
      "consumers", 
      "power", 
      "opportunities", 
      "meters", 
      "hand", 
      "recommendations", 
      "reading", 
      "patterns", 
      "energy demand", 
      "behavior", 
      "intervals", 
      "capacity", 
      "importance", 
      "cases", 
      "analytical investigation", 
      "investigation", 
      "changes", 
      "waste", 
      "effect", 
      "approach", 
      "ideal interval", 
      "small reporting interval", 
      "small interval results", 
      "static energy usage behaviour", 
      "smart meter reading intervals", 
      "meter reading intervals", 
      "reading intervals", 
      "Smart Meter Communication Systems", 
      "Meter Communication Systems"
    ], 
    "name": "A Self-organising Approach for Smart Meter Communication Systems", 
    "pagination": "169-175", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044785620"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-54140-7_17"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-54140-7_17", 
      "https://app.dimensions.ai/details/publication/pub.1044785620"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_449.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-54140-7_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54140-7_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54140-7_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54140-7_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-54140-7_17'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      23 PREDICATES      94 URIs      87 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-54140-7_17 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N035fff3ab4ec40e58ebeb1d4f032fdea
4 schema:datePublished 2014
5 schema:datePublishedReg 2014-01-01
6 schema:description Future energy grids will need to cope with a multitude of new, dynamic situations. Having sufficient information about energy usage patterns is of paramount importance for the grid to react to changing situations and to make the grid ‘smart’. We present preliminary results from an investigation on whether autonomic adaptation of intervals with which individual smart meters report their meter readings can be more effective than commonly used static configurations. A small reporting interval provides close to real-time knowledge about load changes and thus gives the opportunity to balance the energy demand amongst consumers rather than ‘burning’ surplus capacities. On the other hand, a small interval results in a waste of processing power and bandwidth in case of customers that have rather static energy usage behaviour. Hence, an ideal interval cannot be predicted a priori, but needs to be adapted dynamically.We provide an analytical investigation of the effects of autonomic management of smart meter reading intervals, and we make some recommendations on how this scheme can be implemented.
7 schema:editor Nf1db301cbdba4d94a64b6a1b110f54a6
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N0485b894cea14f27b4da5a244371958c
12 schema:keywords Meter Communication Systems
13 Smart Meter Communication Systems
14 adaptation
15 analytical investigation
16 approach
17 autonomic adaptations
18 autonomic management
19 bandwidth
20 behavior
21 capacity
22 case of customers
23 cases
24 changes
25 communication systems
26 configuration
27 consumers
28 customers
29 demand
30 dynamic situations
31 effect
32 energy demand
33 energy grid
34 energy usage behavior
35 energy usage patterns
36 future energy grids
37 grid
38 hand
39 ideal interval
40 importance
41 individual smart meters
42 information
43 interval results
44 intervals
45 investigation
46 knowledge
47 load changes
48 management
49 meter reading intervals
50 meter readings
51 meters
52 multitude
53 opportunities
54 paramount importance
55 patterns
56 power
57 preliminary results
58 processing power
59 reading
60 reading intervals
61 real-time knowledge
62 recommendations
63 reporting intervals
64 results
65 scheme
66 self-organising approach
67 situation
68 small interval results
69 small reporting interval
70 smart meter reading intervals
71 smart meters
72 static configuration
73 static energy usage behaviour
74 sufficient information
75 surplus capacity
76 system
77 usage behavior
78 usage patterns
79 waste
80 schema:name A Self-organising Approach for Smart Meter Communication Systems
81 schema:pagination 169-175
82 schema:productId N5e9d0965a06e44498941c9887016e06c
83 Nfe50158b5f4346eeaef43636e147b54e
84 schema:publisher N93470300d07d4aec82042f1c1956f09d
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044785620
86 https://doi.org/10.1007/978-3-642-54140-7_17
87 schema:sdDatePublished 2022-01-01T19:25
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher N29cd5079dbfd45b6988b7732cc2d04fc
90 schema:url https://doi.org/10.1007/978-3-642-54140-7_17
91 sgo:license sg:explorer/license/
92 sgo:sdDataset chapters
93 rdf:type schema:Chapter
94 N001ad297d1244d789a77c6b58080cb94 schema:familyName Loreto
95 schema:givenName Vittorio
96 rdf:type schema:Person
97 N035fff3ab4ec40e58ebeb1d4f032fdea rdf:first sg:person.011547453365.99
98 rdf:rest N882030eeb3f34c5aa6026bc6a20c0ca6
99 N0485b894cea14f27b4da5a244371958c schema:isbn 978-3-642-54139-1
100 978-3-642-54140-7
101 schema:name Self-Organizing Systems
102 rdf:type schema:Book
103 N0fd3b07f1e8746f8b31984644bafd9bd schema:familyName Elmenreich
104 schema:givenName Wilfried
105 rdf:type schema:Person
106 N29cd5079dbfd45b6988b7732cc2d04fc schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N4c4b65e1f97e43fea07e01c374911430 rdf:first sg:person.014533750563.10
109 rdf:rest N8c4ffc9bea554931aed02d445003d52b
110 N5e9d0965a06e44498941c9887016e06c schema:name dimensions_id
111 schema:value pub.1044785620
112 rdf:type schema:PropertyValue
113 N882030eeb3f34c5aa6026bc6a20c0ca6 rdf:first sg:person.015421471511.42
114 rdf:rest N4c4b65e1f97e43fea07e01c374911430
115 N8c4ffc9bea554931aed02d445003d52b rdf:first sg:person.012636622347.55
116 rdf:rest rdf:nil
117 N93470300d07d4aec82042f1c1956f09d schema:name Springer Nature
118 rdf:type schema:Organisation
119 Nb329401270d74f2e9dea24e0be669a4a schema:familyName Dressler
120 schema:givenName Falko
121 rdf:type schema:Person
122 Ndf02f21307df46b1a1558946cba17031 rdf:first Nb329401270d74f2e9dea24e0be669a4a
123 rdf:rest Neca454d3a2a14e979cf43b082340d868
124 Neca454d3a2a14e979cf43b082340d868 rdf:first N001ad297d1244d789a77c6b58080cb94
125 rdf:rest rdf:nil
126 Nf1db301cbdba4d94a64b6a1b110f54a6 rdf:first N0fd3b07f1e8746f8b31984644bafd9bd
127 rdf:rest Ndf02f21307df46b1a1558946cba17031
128 Nfe50158b5f4346eeaef43636e147b54e schema:name doi
129 schema:value 10.1007/978-3-642-54140-7_17
130 rdf:type schema:PropertyValue
131 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
132 schema:name Information and Computing Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
135 schema:name Artificial Intelligence and Image Processing
136 rdf:type schema:DefinedTerm
137 sg:person.011547453365.99 schema:affiliation grid-institutes:grid.4332.6
138 schema:familyName Tauber
139 schema:givenName Markus Gerhard
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011547453365.99
141 rdf:type schema:Person
142 sg:person.012636622347.55 schema:affiliation grid-institutes:grid.9835.7
143 schema:familyName Hutchison
144 schema:givenName David
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012636622347.55
146 rdf:type schema:Person
147 sg:person.014533750563.10 schema:affiliation grid-institutes:grid.4332.6
148 schema:familyName Bleier
149 schema:givenName Thomas
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014533750563.10
151 rdf:type schema:Person
152 sg:person.015421471511.42 schema:affiliation grid-institutes:grid.4332.6
153 schema:familyName Skopik
154 schema:givenName Florian
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015421471511.42
156 rdf:type schema:Person
157 grid-institutes:grid.4332.6 schema:alternateName AIT, Austrian Institute of Technology, Austria
158 schema:name AIT, Austrian Institute of Technology, Austria
159 rdf:type schema:Organization
160 grid-institutes:grid.9835.7 schema:alternateName Lancaster University, UK
161 schema:name Lancaster University, UK
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...