Implications of Macrophage T-Lymphocyte Interactions for Tumor Rejectability View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1986

AUTHORS

Rob J. de Boer , Pauline Hogeweg

ABSTRACT

A relatively detailed model of experimentally described macrophage T-lymphocyte interactions has been developed. In this model we investigate the immune response to tumors that differ in antigenicity and/or in initial size. Having deliberately omitted from the model tumor escape mechanisms (e.g. suppression, antigenic modulation or heterogeneity), we study the circumstances that nevertheless lead to progressive tumor growth.The model behavior shows that: (1) tumor antigenicity can best be defined in terms of helper T cell reactivity; (2) small differences in the availability of HTL (*) markedly influence tumor rejectability; (3) compared with the impact of macrophages, the impact of CTL increases more with increasing tumor antigenicity; and (4) sneaking through and tolerance are intrinsic to this model.HTL have a large impact on the model behavior (i.e. the immune response) because there are self-reinforcements in the HTL activation and proliferation process. Interestingly, unresponsiveness (tolerance) evolves in this model, despite the presence of these self-reinforcements and the absence of negative interactions (e.g. suppression). Tolerance is caused by a proliferation threshold that comes into existence when T-lymphocyte effectors are made short-lived. We discuss the advantages of using numerical integration combined with numerical phase state analysis. Stable steady states in this model do exist but are of minor importance. More... »

PAGES

120-140

Book

TITLE

Immunology and Epidemiology

ISBN

978-3-540-16431-9
978-3-642-51691-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-51691-7_9

DOI

http://dx.doi.org/10.1007/978-3-642-51691-7_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009265775


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Immunology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bioinformatics Group, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Bioinformatics Group, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Boer", 
        "givenName": "Rob J.", 
        "id": "sg:person.0774503452.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774503452.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioinformatics Group, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Bioinformatics Group, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hogeweg", 
        "givenName": "Pauline", 
        "id": "sg:person.014656171554.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014656171554.05"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1986", 
    "datePublishedReg": "1986-01-01", 
    "description": "A relatively detailed model of experimentally described macrophage T-lymphocyte interactions has been developed. In this model we investigate the immune response to tumors that differ in antigenicity and/or in initial size. Having deliberately omitted from the model tumor escape mechanisms (e.g. suppression, antigenic modulation or heterogeneity), we study the circumstances that nevertheless lead to progressive tumor growth.The model behavior shows that: (1) tumor antigenicity can best be defined in terms of helper T cell reactivity; (2) small differences in the availability of HTL (*) markedly influence tumor rejectability; (3) compared with the impact of macrophages, the impact of CTL increases more with increasing tumor antigenicity; and (4) sneaking through and tolerance are intrinsic to this model.HTL have a large impact on the model behavior (i.e. the immune response) because there are self-reinforcements in the HTL activation and proliferation process. Interestingly, unresponsiveness (tolerance) evolves in this model, despite the presence of these self-reinforcements and the absence of negative interactions (e.g. suppression). Tolerance is caused by a proliferation threshold that comes into existence when T-lymphocyte effectors are made short-lived. We discuss the advantages of using numerical integration combined with numerical phase state analysis. Stable steady states in this model do exist but are of minor importance.", 
    "editor": [
      {
        "familyName": "Hoffmann", 
        "givenName": "Geoffrey W.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hraba", 
        "givenName": "Tom\u00e1\u0161", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-51691-7_9", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-16431-9", 
        "978-3-642-51691-7"
      ], 
      "name": "Immunology and Epidemiology", 
      "type": "Book"
    }, 
    "keywords": [
      "macrophage-T lymphocyte interaction", 
      "T lymphocyte interactions", 
      "tumor antigenicity", 
      "T lymphocyte effectors", 
      "tumor escape mechanisms", 
      "progressive tumor growth", 
      "T cell reactivity", 
      "impact of macrophages", 
      "cell reactivity", 
      "immune response", 
      "tumor growth", 
      "escape mechanisms", 
      "antigenicity", 
      "proliferation process", 
      "tumors", 
      "proliferation threshold", 
      "macrophages", 
      "CTL", 
      "activation", 
      "tolerance", 
      "rejectability", 
      "effectors", 
      "response", 
      "differences", 
      "impact", 
      "absence", 
      "negative interactions", 
      "small differences", 
      "minor importance", 
      "initial size", 
      "presence", 
      "mechanism", 
      "reactivity", 
      "threshold", 
      "model", 
      "interaction", 
      "steady state", 
      "analysis", 
      "importance", 
      "implications", 
      "circumstances", 
      "growth", 
      "availability", 
      "HTL", 
      "large impact", 
      "size", 
      "behavior", 
      "state", 
      "terms", 
      "advantages", 
      "process", 
      "existence", 
      "evolves", 
      "integration", 
      "model behavior", 
      "stable steady state", 
      "state analysis", 
      "detailed model", 
      "numerical integration"
    ], 
    "name": "Implications of Macrophage T-Lymphocyte Interactions for Tumor Rejectability", 
    "pagination": "120-140", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009265775"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-51691-7_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-51691-7_9", 
      "https://app.dimensions.ai/details/publication/pub.1009265775"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_84.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-51691-7_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-51691-7_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-51691-7_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-51691-7_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-51691-7_9'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      22 PREDICATES      84 URIs      77 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-51691-7_9 schema:about anzsrc-for:11
2 anzsrc-for:1107
3 schema:author Nb82bf1c2434d43258d57dae675b18019
4 schema:datePublished 1986
5 schema:datePublishedReg 1986-01-01
6 schema:description A relatively detailed model of experimentally described macrophage T-lymphocyte interactions has been developed. In this model we investigate the immune response to tumors that differ in antigenicity and/or in initial size. Having deliberately omitted from the model tumor escape mechanisms (e.g. suppression, antigenic modulation or heterogeneity), we study the circumstances that nevertheless lead to progressive tumor growth.The model behavior shows that: (1) tumor antigenicity can best be defined in terms of helper T cell reactivity; (2) small differences in the availability of HTL (*) markedly influence tumor rejectability; (3) compared with the impact of macrophages, the impact of CTL increases more with increasing tumor antigenicity; and (4) sneaking through and tolerance are intrinsic to this model.HTL have a large impact on the model behavior (i.e. the immune response) because there are self-reinforcements in the HTL activation and proliferation process. Interestingly, unresponsiveness (tolerance) evolves in this model, despite the presence of these self-reinforcements and the absence of negative interactions (e.g. suppression). Tolerance is caused by a proliferation threshold that comes into existence when T-lymphocyte effectors are made short-lived. We discuss the advantages of using numerical integration combined with numerical phase state analysis. Stable steady states in this model do exist but are of minor importance.
7 schema:editor N1f5ddf2681ec45a19c89bd9b25135f46
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N89fa124b738e49f2abdaa26a857cbbe7
11 schema:keywords CTL
12 HTL
13 T cell reactivity
14 T lymphocyte effectors
15 T lymphocyte interactions
16 absence
17 activation
18 advantages
19 analysis
20 antigenicity
21 availability
22 behavior
23 cell reactivity
24 circumstances
25 detailed model
26 differences
27 effectors
28 escape mechanisms
29 evolves
30 existence
31 growth
32 immune response
33 impact
34 impact of macrophages
35 implications
36 importance
37 initial size
38 integration
39 interaction
40 large impact
41 macrophage-T lymphocyte interaction
42 macrophages
43 mechanism
44 minor importance
45 model
46 model behavior
47 negative interactions
48 numerical integration
49 presence
50 process
51 progressive tumor growth
52 proliferation process
53 proliferation threshold
54 reactivity
55 rejectability
56 response
57 size
58 small differences
59 stable steady state
60 state
61 state analysis
62 steady state
63 terms
64 threshold
65 tolerance
66 tumor antigenicity
67 tumor escape mechanisms
68 tumor growth
69 tumors
70 schema:name Implications of Macrophage T-Lymphocyte Interactions for Tumor Rejectability
71 schema:pagination 120-140
72 schema:productId N2c2c440763304ed0893ecfe273b1f0e6
73 N3e14815afb0c47968fdacbb262f843be
74 schema:publisher Nca3e575d521b4575ae31674ef7a8214e
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009265775
76 https://doi.org/10.1007/978-3-642-51691-7_9
77 schema:sdDatePublished 2022-09-02T16:18
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N491cf920727d4cf99d21803900d6304a
80 schema:url https://doi.org/10.1007/978-3-642-51691-7_9
81 sgo:license sg:explorer/license/
82 sgo:sdDataset chapters
83 rdf:type schema:Chapter
84 N0527c5820db0428bb7a953d21c2b628f rdf:first sg:person.014656171554.05
85 rdf:rest rdf:nil
86 N1f5ddf2681ec45a19c89bd9b25135f46 rdf:first N90b8bb6a272d4e8ab65f5452665fc308
87 rdf:rest Na862167c19c5486e84063f93975124bb
88 N2c2c440763304ed0893ecfe273b1f0e6 schema:name dimensions_id
89 schema:value pub.1009265775
90 rdf:type schema:PropertyValue
91 N3e14815afb0c47968fdacbb262f843be schema:name doi
92 schema:value 10.1007/978-3-642-51691-7_9
93 rdf:type schema:PropertyValue
94 N491cf920727d4cf99d21803900d6304a schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N89fa124b738e49f2abdaa26a857cbbe7 schema:isbn 978-3-540-16431-9
97 978-3-642-51691-7
98 schema:name Immunology and Epidemiology
99 rdf:type schema:Book
100 N90b8bb6a272d4e8ab65f5452665fc308 schema:familyName Hoffmann
101 schema:givenName Geoffrey W.
102 rdf:type schema:Person
103 Na862167c19c5486e84063f93975124bb rdf:first Ndbd6a5e7da034e89b82f4e4ceaed66f7
104 rdf:rest rdf:nil
105 Nb82bf1c2434d43258d57dae675b18019 rdf:first sg:person.0774503452.97
106 rdf:rest N0527c5820db0428bb7a953d21c2b628f
107 Nca3e575d521b4575ae31674ef7a8214e schema:name Springer Nature
108 rdf:type schema:Organisation
109 Ndbd6a5e7da034e89b82f4e4ceaed66f7 schema:familyName Hraba
110 schema:givenName Tomáš
111 rdf:type schema:Person
112 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
113 schema:name Medical and Health Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
116 schema:name Immunology
117 rdf:type schema:DefinedTerm
118 sg:person.014656171554.05 schema:affiliation grid-institutes:grid.5477.1
119 schema:familyName Hogeweg
120 schema:givenName Pauline
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014656171554.05
122 rdf:type schema:Person
123 sg:person.0774503452.97 schema:affiliation grid-institutes:grid.5477.1
124 schema:familyName de Boer
125 schema:givenName Rob J.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774503452.97
127 rdf:type schema:Person
128 grid-institutes:grid.5477.1 schema:alternateName Bioinformatics Group, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands
129 schema:name Bioinformatics Group, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...