Classification of aligned biological sequences View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1994

AUTHORS

I. C. Lerman , J. Nicolas , B. Tallur , P. Peter

ABSTRACT

Classifying protein sequences according to their respective “proximities” is crucial for many aspects of knowledge induction in the field of molecular biology (Landes et al. (1992)). Formally the elements to be organized according to a classification scheme are sequences of letters belonging to a finite alphabet (20 amino acids for proteins). For a given family of protein sequences the quality of the classification is appraised by comparing it with the known evolution links between the concerned species (phy-logeny). It is clear that the hope to fully recover the phylogeny from a single type of protein is ambitious. Our aim is simply to design a classification method approaching at best this goal with a low sensitivity to parameter tuning. Building a reliable phy-logenetic tree would require to mix the results of several classifications on different proteins and consider several approaches. More... »

PAGES

370-377

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-51175-2_42

DOI

http://dx.doi.org/10.1007/978-3-642-51175-2_42

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014125038


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IRISA, Campus Universitaire de Beaulieu, Avenue de Gen. Leclerc, 35042, Rennes cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.420225.3", 
          "name": [
            "IRISA, Campus Universitaire de Beaulieu, Avenue de Gen. Leclerc, 35042, Rennes cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lerman", 
        "givenName": "I. C.", 
        "id": "sg:person.01203225401.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203225401.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IRISA, Campus Universitaire de Beaulieu, Avenue de Gen. Leclerc, 35042, Rennes cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.420225.3", 
          "name": [
            "IRISA, Campus Universitaire de Beaulieu, Avenue de Gen. Leclerc, 35042, Rennes cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nicolas", 
        "givenName": "J.", 
        "id": "sg:person.01143715001.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143715001.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IRISA, Campus Universitaire de Beaulieu, Avenue de Gen. Leclerc, 35042, Rennes cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.420225.3", 
          "name": [
            "IRISA, Campus Universitaire de Beaulieu, Avenue de Gen. Leclerc, 35042, Rennes cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tallur", 
        "givenName": "B.", 
        "id": "sg:person.07452354621.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07452354621.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IRESTE, La Chantrerie CP 003, 44087, Nantes Cedex, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "IRESTE, La Chantrerie CP 003, 44087, Nantes Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peter", 
        "givenName": "P.", 
        "type": "Person"
      }
    ], 
    "datePublished": "1994", 
    "datePublishedReg": "1994-01-01", 
    "description": "Classifying protein sequences according to their respective \u201cproximities\u201d is crucial for many aspects of knowledge induction in the field of molecular biology (Landes et al. (1992)). Formally the elements to be organized according to a classification scheme are sequences of letters belonging to a finite alphabet (20 amino acids for proteins). For a given family of protein sequences the quality of the classification is appraised by comparing it with the known evolution links between the concerned species (phy-logeny). It is clear that the hope to fully recover the phylogeny from a single type of protein is ambitious. Our aim is simply to design a classification method approaching at best this goal with a low sensitivity to parameter tuning. Building a reliable phy-logenetic tree would require to mix the results of several classifications on different proteins and consider several approaches.", 
    "editor": [
      {
        "familyName": "Diday", 
        "givenName": "Edwin", 
        "type": "Person"
      }, 
      {
        "familyName": "Lechevallier", 
        "givenName": "Yves", 
        "type": "Person"
      }, 
      {
        "familyName": "Schader", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "familyName": "Bertrand", 
        "givenName": "Patrice", 
        "type": "Person"
      }, 
      {
        "familyName": "Burtschy", 
        "givenName": "Bernard", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-51175-2_42", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-58425-4", 
        "978-3-642-51175-2"
      ], 
      "name": "New Approaches in Classification and Data Analysis", 
      "type": "Book"
    }, 
    "keywords": [
      "protein sequences", 
      "different proteins", 
      "molecular biology", 
      "concerned species", 
      "sequence", 
      "protein", 
      "biological sequences", 
      "phylogeny", 
      "evolution links", 
      "biology", 
      "species", 
      "single type", 
      "trees", 
      "induction", 
      "family", 
      "proximity", 
      "elements", 
      "link", 
      "types", 
      "classification scheme", 
      "sensitivity", 
      "aspects", 
      "classification", 
      "results", 
      "low sensitivity", 
      "approach", 
      "sequence of letters", 
      "tuning", 
      "field", 
      "knowledge induction", 
      "aim", 
      "goal", 
      "hope", 
      "quality", 
      "method", 
      "alphabet", 
      "classification method", 
      "scheme", 
      "finite alphabet", 
      "parameter tuning", 
      "letter", 
      "reliable phy-logenetic tree", 
      "phy-logenetic tree"
    ], 
    "name": "Classification of aligned biological sequences", 
    "pagination": "370-377", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014125038"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-51175-2_42"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-51175-2_42", 
      "https://app.dimensions.ai/details/publication/pub.1014125038"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_391.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-51175-2_42"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-51175-2_42'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-51175-2_42'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-51175-2_42'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-51175-2_42'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      23 PREDICATES      69 URIs      62 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-51175-2_42 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N541c9749bc724711b7dd2eec971b1949
4 schema:datePublished 1994
5 schema:datePublishedReg 1994-01-01
6 schema:description Classifying protein sequences according to their respective “proximities” is crucial for many aspects of knowledge induction in the field of molecular biology (Landes et al. (1992)). Formally the elements to be organized according to a classification scheme are sequences of letters belonging to a finite alphabet (20 amino acids for proteins). For a given family of protein sequences the quality of the classification is appraised by comparing it with the known evolution links between the concerned species (phy-logeny). It is clear that the hope to fully recover the phylogeny from a single type of protein is ambitious. Our aim is simply to design a classification method approaching at best this goal with a low sensitivity to parameter tuning. Building a reliable phy-logenetic tree would require to mix the results of several classifications on different proteins and consider several approaches.
7 schema:editor N92a5d77616cf466591c6f435c401c59d
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ne95401eee17c4ba0a04637df4c27caf5
12 schema:keywords aim
13 alphabet
14 approach
15 aspects
16 biological sequences
17 biology
18 classification
19 classification method
20 classification scheme
21 concerned species
22 different proteins
23 elements
24 evolution links
25 family
26 field
27 finite alphabet
28 goal
29 hope
30 induction
31 knowledge induction
32 letter
33 link
34 low sensitivity
35 method
36 molecular biology
37 parameter tuning
38 phy-logenetic tree
39 phylogeny
40 protein
41 protein sequences
42 proximity
43 quality
44 reliable phy-logenetic tree
45 results
46 scheme
47 sensitivity
48 sequence
49 sequence of letters
50 single type
51 species
52 trees
53 tuning
54 types
55 schema:name Classification of aligned biological sequences
56 schema:pagination 370-377
57 schema:productId N12ab12f49282494684c7a5e439d70300
58 Nbca5bbd2a03940599d15af451927f64f
59 schema:publisher N2377b510bdcd484cbe8e9964748dfc3c
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014125038
61 https://doi.org/10.1007/978-3-642-51175-2_42
62 schema:sdDatePublished 2021-11-01T18:58
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N280e5073a4c343c59ca8c518862b8c18
65 schema:url https://doi.org/10.1007/978-3-642-51175-2_42
66 sgo:license sg:explorer/license/
67 sgo:sdDataset chapters
68 rdf:type schema:Chapter
69 N01b5641687b64a4ba9f7072b9dfab45d rdf:first sg:person.07452354621.08
70 rdf:rest N51536fa5642940839aa7760540ff8300
71 N12ab12f49282494684c7a5e439d70300 schema:name doi
72 schema:value 10.1007/978-3-642-51175-2_42
73 rdf:type schema:PropertyValue
74 N1a40ac187af349409026ac4397521cc9 rdf:first N72e189c56dc245b6a5ce4c8932af44fa
75 rdf:rest rdf:nil
76 N2377b510bdcd484cbe8e9964748dfc3c schema:name Springer Nature
77 rdf:type schema:Organisation
78 N23a72ae883354dd1987a7ba0d7fe94c1 schema:familyName Lechevallier
79 schema:givenName Yves
80 rdf:type schema:Person
81 N280e5073a4c343c59ca8c518862b8c18 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N2e3c5b9bea6a47a6a88ebe25b938af81 schema:familyName Diday
84 schema:givenName Edwin
85 rdf:type schema:Person
86 N374b99b0fcec4d029014b4eb8d6a881d rdf:first Nfb384d34c50149878f0437701143e463
87 rdf:rest Nac5a499616344ce0bd0f02d8f2c34016
88 N4c4914d4b17c413f869437c8db818fbb schema:affiliation grid-institutes:None
89 schema:familyName Peter
90 schema:givenName P.
91 rdf:type schema:Person
92 N51536fa5642940839aa7760540ff8300 rdf:first N4c4914d4b17c413f869437c8db818fbb
93 rdf:rest rdf:nil
94 N541c9749bc724711b7dd2eec971b1949 rdf:first sg:person.01203225401.61
95 rdf:rest N9b5a4d9b78d34249a763df37a7d1d331
96 N72e189c56dc245b6a5ce4c8932af44fa schema:familyName Burtschy
97 schema:givenName Bernard
98 rdf:type schema:Person
99 N8c8f4bc1495746c5803e2d72beff7e2e rdf:first N23a72ae883354dd1987a7ba0d7fe94c1
100 rdf:rest N374b99b0fcec4d029014b4eb8d6a881d
101 N92a5d77616cf466591c6f435c401c59d rdf:first N2e3c5b9bea6a47a6a88ebe25b938af81
102 rdf:rest N8c8f4bc1495746c5803e2d72beff7e2e
103 N9b5a4d9b78d34249a763df37a7d1d331 rdf:first sg:person.01143715001.20
104 rdf:rest N01b5641687b64a4ba9f7072b9dfab45d
105 Nac5a499616344ce0bd0f02d8f2c34016 rdf:first Naea6ce8c4da94489a07c780a6df08961
106 rdf:rest N1a40ac187af349409026ac4397521cc9
107 Naea6ce8c4da94489a07c780a6df08961 schema:familyName Bertrand
108 schema:givenName Patrice
109 rdf:type schema:Person
110 Nbca5bbd2a03940599d15af451927f64f schema:name dimensions_id
111 schema:value pub.1014125038
112 rdf:type schema:PropertyValue
113 Ne95401eee17c4ba0a04637df4c27caf5 schema:isbn 978-3-540-58425-4
114 978-3-642-51175-2
115 schema:name New Approaches in Classification and Data Analysis
116 rdf:type schema:Book
117 Nfb384d34c50149878f0437701143e463 schema:familyName Schader
118 schema:givenName Martin
119 rdf:type schema:Person
120 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
121 schema:name Biological Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
124 schema:name Biochemistry and Cell Biology
125 rdf:type schema:DefinedTerm
126 sg:person.01143715001.20 schema:affiliation grid-institutes:grid.420225.3
127 schema:familyName Nicolas
128 schema:givenName J.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143715001.20
130 rdf:type schema:Person
131 sg:person.01203225401.61 schema:affiliation grid-institutes:grid.420225.3
132 schema:familyName Lerman
133 schema:givenName I. C.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203225401.61
135 rdf:type schema:Person
136 sg:person.07452354621.08 schema:affiliation grid-institutes:grid.420225.3
137 schema:familyName Tallur
138 schema:givenName B.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07452354621.08
140 rdf:type schema:Person
141 grid-institutes:None schema:alternateName IRESTE, La Chantrerie CP 003, 44087, Nantes Cedex, France
142 schema:name IRESTE, La Chantrerie CP 003, 44087, Nantes Cedex, France
143 rdf:type schema:Organization
144 grid-institutes:grid.420225.3 schema:alternateName IRISA, Campus Universitaire de Beaulieu, Avenue de Gen. Leclerc, 35042, Rennes cedex, France
145 schema:name IRISA, Campus Universitaire de Beaulieu, Avenue de Gen. Leclerc, 35042, Rennes cedex, France
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...