Some Results on Lyapunov Exponents for Products of Random Matrices View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1988

AUTHORS

A. Vulpiani

ABSTRACT

Many problems in physics can be reduced to product of random matrices [1,2]. Let us briefly discuss some cases. In the one dimensional disordered systems, i.e., with Hamiltonian containing random couplings and random fields (for example a disordered Ising chain) the free energy is related to the maximum Lyapunov exponent λ1 of the product of suitable random transfer matrices. Another example is given by the discretized Schrödinger equation on a one dimensional lattice with a random potential [2]. Indeed, one can write the equation in terms of product of random matrices and in this case λ1 is the inverse of the characteristic length of the localized wave functions. More... »

PAGES

216-219

Book

TITLE

Universalities in Condensed Matter

ISBN

978-3-642-51007-6
978-3-642-51005-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-51005-2_43

DOI

http://dx.doi.org/10.1007/978-3-642-51005-2_43

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005937448


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 di Roma \u201cLa Sapienza\u201d, P. le Aldo Moro 2, I-00185\u00a0Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vulpiani", 
        "givenName": "A.", 
        "id": "sg:person.01352261626.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02128237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018613447", 
          "https://doi.org/10.1007/bf02128237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02128237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018613447", 
          "https://doi.org/10.1007/bf02128237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01010337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024825634", 
          "https://doi.org/10.1007/bf01010337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(87)90110-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031137665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(87)90110-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031137665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:019840045080128300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056991125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.42.1247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060783545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.42.1247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060783545"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988", 
    "datePublishedReg": "1988-01-01", 
    "description": "Many problems in physics can be reduced to product of random matrices [1,2]. Let us briefly discuss some cases. In the one dimensional disordered systems, i.e., with Hamiltonian containing random couplings and random fields (for example a disordered Ising chain) the free energy is related to the maximum Lyapunov exponent \u03bb1 of the product of suitable random transfer matrices. Another example is given by the discretized Schr\u00f6dinger equation on a one dimensional lattice with a random potential [2]. Indeed, one can write the equation in terms of product of random matrices and in this case \u03bb1 is the inverse of the characteristic length of the localized wave functions.", 
    "editor": [
      {
        "familyName": "Jullien", 
        "givenName": "Remi", 
        "type": "Person"
      }, 
      {
        "familyName": "Peliti", 
        "givenName": "Luca", 
        "type": "Person"
      }, 
      {
        "familyName": "Rammal", 
        "givenName": "Rammal", 
        "type": "Person"
      }, 
      {
        "familyName": "Boccara", 
        "givenName": "Nino", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-51005-2_43", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-51007-6", 
        "978-3-642-51005-2"
      ], 
      "name": "Universalities in Condensed Matter", 
      "type": "Book"
    }, 
    "name": "Some Results on Lyapunov Exponents for Products of Random Matrices", 
    "pagination": "216-219", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-51005-2_43"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1c48b3449a8d4de37373bba0402b3bb536fd5f3dfb9c41eec5ac76b76b4ffbf1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005937448"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-51005-2_43", 
      "https://app.dimensions.ai/details/publication/pub.1005937448"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000246.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-51005-2_43"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-51005-2_43'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-51005-2_43'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-51005-2_43'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-51005-2_43'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-51005-2_43 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ncd3c3a6574f246de906f78b9e12dfca8
4 schema:citation sg:pub.10.1007/bf01010337
5 sg:pub.10.1007/bf02128237
6 https://doi.org/10.1016/0370-1573(87)90110-4
7 https://doi.org/10.1051/jphys:019840045080128300
8 https://doi.org/10.1103/physrevlett.42.1247
9 schema:datePublished 1988
10 schema:datePublishedReg 1988-01-01
11 schema:description Many problems in physics can be reduced to product of random matrices [1,2]. Let us briefly discuss some cases. In the one dimensional disordered systems, i.e., with Hamiltonian containing random couplings and random fields (for example a disordered Ising chain) the free energy is related to the maximum Lyapunov exponent λ1 of the product of suitable random transfer matrices. Another example is given by the discretized Schrödinger equation on a one dimensional lattice with a random potential [2]. Indeed, one can write the equation in terms of product of random matrices and in this case λ1 is the inverse of the characteristic length of the localized wave functions.
12 schema:editor Naf73ce1aa46a4820ae278fa72d444c63
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Nf2eea5fa4f24434293122265f50e9d76
17 schema:name Some Results on Lyapunov Exponents for Products of Random Matrices
18 schema:pagination 216-219
19 schema:productId N399f70784b344806bb7e419f43208743
20 N66ddb1ba294c47219ccad92840bc0eda
21 Nf88b948afda346f0b71375b93ad20312
22 schema:publisher Nb27b462e856e4b2787e64e4ddf5ec629
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005937448
24 https://doi.org/10.1007/978-3-642-51005-2_43
25 schema:sdDatePublished 2019-04-15T16:14
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N30d938208b2d49d18fa2d82a9f848246
28 schema:url http://link.springer.com/10.1007/978-3-642-51005-2_43
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N09619a2334b044b5b4339bf522559ae9 schema:familyName Rammal
33 schema:givenName Rammal
34 rdf:type schema:Person
35 N0c98808cb2ab41e9b84272f397ed24fb schema:familyName Jullien
36 schema:givenName Remi
37 rdf:type schema:Person
38 N0dfc46ebf0cc499e9861b034afce829e rdf:first N489dad74f2614b5b82d4c71c244e6082
39 rdf:rest rdf:nil
40 N30d938208b2d49d18fa2d82a9f848246 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N399f70784b344806bb7e419f43208743 schema:name dimensions_id
43 schema:value pub.1005937448
44 rdf:type schema:PropertyValue
45 N489dad74f2614b5b82d4c71c244e6082 schema:familyName Boccara
46 schema:givenName Nino
47 rdf:type schema:Person
48 N66ddb1ba294c47219ccad92840bc0eda schema:name doi
49 schema:value 10.1007/978-3-642-51005-2_43
50 rdf:type schema:PropertyValue
51 N7113f4806ac34b2d8d4b05787c8bac41 rdf:first N7d91797167d84b9da433244558d645da
52 rdf:rest N7c6715b2820e40d0a2a5ec31e2fe98a3
53 N7c6715b2820e40d0a2a5ec31e2fe98a3 rdf:first N09619a2334b044b5b4339bf522559ae9
54 rdf:rest N0dfc46ebf0cc499e9861b034afce829e
55 N7d91797167d84b9da433244558d645da schema:familyName Peliti
56 schema:givenName Luca
57 rdf:type schema:Person
58 Naf73ce1aa46a4820ae278fa72d444c63 rdf:first N0c98808cb2ab41e9b84272f397ed24fb
59 rdf:rest N7113f4806ac34b2d8d4b05787c8bac41
60 Nb27b462e856e4b2787e64e4ddf5ec629 schema:location Berlin, Heidelberg
61 schema:name Springer Berlin Heidelberg
62 rdf:type schema:Organisation
63 Ncd3c3a6574f246de906f78b9e12dfca8 rdf:first sg:person.01352261626.07
64 rdf:rest rdf:nil
65 Nf2eea5fa4f24434293122265f50e9d76 schema:isbn 978-3-642-51005-2
66 978-3-642-51007-6
67 schema:name Universalities in Condensed Matter
68 rdf:type schema:Book
69 Nf88b948afda346f0b71375b93ad20312 schema:name readcube_id
70 schema:value 1c48b3449a8d4de37373bba0402b3bb536fd5f3dfb9c41eec5ac76b76b4ffbf1
71 rdf:type schema:PropertyValue
72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
73 schema:name Mathematical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
76 schema:name Statistics
77 rdf:type schema:DefinedTerm
78 sg:person.01352261626.07 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
79 schema:familyName Vulpiani
80 schema:givenName A.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07
82 rdf:type schema:Person
83 sg:pub.10.1007/bf01010337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024825634
84 https://doi.org/10.1007/bf01010337
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf02128237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018613447
87 https://doi.org/10.1007/bf02128237
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/0370-1573(87)90110-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031137665
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1051/jphys:019840045080128300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056991125
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1103/physrevlett.42.1247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060783545
94 rdf:type schema:CreativeWork
95 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
96 schema:name Dipartimento di Fisica, Università di Roma “La Sapienza”, P. le Aldo Moro 2, I-00185 Roma, Italy
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...