A Hierarchical Schrödinger Operator View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1988

AUTHORS

R. Livi , A. Maritan , S. Ruffo

ABSTRACT

Let us consider the following one-dimensional discrete Schrödinger equation ψ(x+1) = α(x)ψ(x) − ψ(x − 1) (1) where x ∈ Z+ and α(x) = α m = Vm − E + 2, with x = 2m(2l + 1). Once faced with such problems, one usually tries to find the eigenvalues and the eigenfunctions, given some particular boundary conditions. For the purpose we choose periodic boundary conditions |ψ(0)| = |ψ(N)|, N = 2n. More... »

PAGES

80-83

References to SciGraph publications

  • 1981-03. Almost periodic Schrödinger operators in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Book

    TITLE

    Universalities in Condensed Matter

    ISBN

    978-3-642-51007-6
    978-3-642-51005-2

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-51005-2_14

    DOI

    http://dx.doi.org/10.1007/978-3-642-51005-2_14

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033461746


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Dipartimento di Fisica, Unversit\u00e0 degli Studi di Firenze, Largo E. Fermi 2, I-50125\u00a0Firenze, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Livi", 
            "givenName": "R.", 
            "id": "sg:person.0772676522.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772676522.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bari Aldo Moro", 
              "id": "https://www.grid.ac/institutes/grid.7644.1", 
              "name": [
                "Dipartimento di Fisica, Universit\u00e0 degli studi di Bari, Via Amendola 165, I-70126\u00a0Bari, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maritan", 
            "givenName": "A.", 
            "id": "sg:person.01167033707.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167033707.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Basilicata", 
              "id": "https://www.grid.ac/institutes/grid.7367.5", 
              "name": [
                "Facolt\u00e1 di Scienze M.F.N, Universit\u00e0 della Basilicata, Potenza, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ruffo", 
            "givenName": "S.", 
            "id": "sg:person.01365701241.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365701241.87"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01206947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052820454", 
              "https://doi.org/10.1007/bf01206947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01206947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052820454", 
              "https://doi.org/10.1007/bf01206947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.50.1870", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060788597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.50.1870", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060788597"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1988", 
        "datePublishedReg": "1988-01-01", 
        "description": "Let us consider the following one-dimensional discrete Schr\u00f6dinger equation \u03c8(x+1) = \u03b1(x)\u03c8(x) \u2212 \u03c8(x \u2212 1) (1) where x \u2208 Z+ and \u03b1(x) = \u03b1 m = Vm \u2212 E + 2, with x = 2m(2l + 1). Once faced with such problems, one usually tries to find the eigenvalues and the eigenfunctions, given some particular boundary conditions. For the purpose we choose periodic boundary conditions |\u03c8(0)| = |\u03c8(N)|, N = 2n.", 
        "editor": [
          {
            "familyName": "Jullien", 
            "givenName": "Remi", 
            "type": "Person"
          }, 
          {
            "familyName": "Peliti", 
            "givenName": "Luca", 
            "type": "Person"
          }, 
          {
            "familyName": "Rammal", 
            "givenName": "Rammal", 
            "type": "Person"
          }, 
          {
            "familyName": "Boccara", 
            "givenName": "Nino", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-51005-2_14", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-51007-6", 
            "978-3-642-51005-2"
          ], 
          "name": "Universalities in Condensed Matter", 
          "type": "Book"
        }, 
        "name": "A Hierarchical Schr\u00f6dinger Operator", 
        "pagination": "80-83", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-51005-2_14"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9f679c85aa28e1bdd2d92e37ae2f655f52c54c44e4fa627bafbb6c2f35d66b1e"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033461746"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-51005-2_14", 
          "https://app.dimensions.ai/details/publication/pub.1033461746"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T23:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000264.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-51005-2_14"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-51005-2_14'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-51005-2_14'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-51005-2_14'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-51005-2_14'


     

    This table displays all metadata directly associated to this object as RDF triples.

    106 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-51005-2_14 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N3117f4ac0c4742dcb2104556bededafa
    4 schema:citation sg:pub.10.1007/bf01206947
    5 https://doi.org/10.1103/physrevlett.50.1870
    6 schema:datePublished 1988
    7 schema:datePublishedReg 1988-01-01
    8 schema:description Let us consider the following one-dimensional discrete Schrödinger equation ψ(x+1) = α(x)ψ(x) − ψ(x − 1) (1) where x ∈ Z+ and α(x) = α m = Vm − E + 2, with x = 2m(2l + 1). Once faced with such problems, one usually tries to find the eigenvalues and the eigenfunctions, given some particular boundary conditions. For the purpose we choose periodic boundary conditions |ψ(0)| = |ψ(N)|, N = 2n.
    9 schema:editor Ned2bed19c7034001a75f15304c1cfc84
    10 schema:genre chapter
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N783c10062168424a870628cfdf676def
    14 schema:name A Hierarchical Schrödinger Operator
    15 schema:pagination 80-83
    16 schema:productId N3202ef0077be41088cc84d8188c83fdb
    17 N6276ddba84b74a4c8298a409187d032c
    18 Neddf8e6c35124437bdf3a415bb5b773c
    19 schema:publisher N31b5ad48bb4a45eabc6b7247cbed8fe7
    20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033461746
    21 https://doi.org/10.1007/978-3-642-51005-2_14
    22 schema:sdDatePublished 2019-04-15T23:53
    23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    24 schema:sdPublisher Nc36ba89c55ad4e259dddef26e61cdd47
    25 schema:url http://link.springer.com/10.1007/978-3-642-51005-2_14
    26 sgo:license sg:explorer/license/
    27 sgo:sdDataset chapters
    28 rdf:type schema:Chapter
    29 N07547c1902bf47ed9302700d0c2c93d1 rdf:first sg:person.01365701241.87
    30 rdf:rest rdf:nil
    31 N296ab480e1184e7a995b340533fbd53d rdf:first sg:person.01167033707.88
    32 rdf:rest N07547c1902bf47ed9302700d0c2c93d1
    33 N3117f4ac0c4742dcb2104556bededafa rdf:first sg:person.0772676522.84
    34 rdf:rest N296ab480e1184e7a995b340533fbd53d
    35 N31b5ad48bb4a45eabc6b7247cbed8fe7 schema:location Berlin, Heidelberg
    36 schema:name Springer Berlin Heidelberg
    37 rdf:type schema:Organisation
    38 N3202ef0077be41088cc84d8188c83fdb schema:name doi
    39 schema:value 10.1007/978-3-642-51005-2_14
    40 rdf:type schema:PropertyValue
    41 N6276ddba84b74a4c8298a409187d032c schema:name dimensions_id
    42 schema:value pub.1033461746
    43 rdf:type schema:PropertyValue
    44 N77a68217fb46447fa38173a146382c03 rdf:first N8331371cad504c9a8725909c0556a610
    45 rdf:rest Nba105375c41e428687a7ac1f85791379
    46 N783c10062168424a870628cfdf676def schema:isbn 978-3-642-51005-2
    47 978-3-642-51007-6
    48 schema:name Universalities in Condensed Matter
    49 rdf:type schema:Book
    50 N7b979a96dec1453dbcd7fa375fb19d90 schema:familyName Boccara
    51 schema:givenName Nino
    52 rdf:type schema:Person
    53 N8331371cad504c9a8725909c0556a610 schema:familyName Rammal
    54 schema:givenName Rammal
    55 rdf:type schema:Person
    56 N8a82673272be42c19818b82fa7c1ce37 schema:familyName Peliti
    57 schema:givenName Luca
    58 rdf:type schema:Person
    59 Na4421d36eb1b4eb793d5eae2a573d3c5 rdf:first N8a82673272be42c19818b82fa7c1ce37
    60 rdf:rest N77a68217fb46447fa38173a146382c03
    61 Nba105375c41e428687a7ac1f85791379 rdf:first N7b979a96dec1453dbcd7fa375fb19d90
    62 rdf:rest rdf:nil
    63 Nc36ba89c55ad4e259dddef26e61cdd47 schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 Ndabef1f822c048a5b05a3c9babe88dc3 schema:familyName Jullien
    66 schema:givenName Remi
    67 rdf:type schema:Person
    68 Ne4d3e00bd3b941efad97a0261b713907 schema:name Dipartimento di Fisica, Unversità degli Studi di Firenze, Largo E. Fermi 2, I-50125 Firenze, Italy
    69 rdf:type schema:Organization
    70 Ned2bed19c7034001a75f15304c1cfc84 rdf:first Ndabef1f822c048a5b05a3c9babe88dc3
    71 rdf:rest Na4421d36eb1b4eb793d5eae2a573d3c5
    72 Neddf8e6c35124437bdf3a415bb5b773c schema:name readcube_id
    73 schema:value 9f679c85aa28e1bdd2d92e37ae2f655f52c54c44e4fa627bafbb6c2f35d66b1e
    74 rdf:type schema:PropertyValue
    75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Mathematical Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Pure Mathematics
    80 rdf:type schema:DefinedTerm
    81 sg:person.01167033707.88 schema:affiliation https://www.grid.ac/institutes/grid.7644.1
    82 schema:familyName Maritan
    83 schema:givenName A.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167033707.88
    85 rdf:type schema:Person
    86 sg:person.01365701241.87 schema:affiliation https://www.grid.ac/institutes/grid.7367.5
    87 schema:familyName Ruffo
    88 schema:givenName S.
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365701241.87
    90 rdf:type schema:Person
    91 sg:person.0772676522.84 schema:affiliation Ne4d3e00bd3b941efad97a0261b713907
    92 schema:familyName Livi
    93 schema:givenName R.
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772676522.84
    95 rdf:type schema:Person
    96 sg:pub.10.1007/bf01206947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052820454
    97 https://doi.org/10.1007/bf01206947
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1103/physrevlett.50.1870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788597
    100 rdf:type schema:CreativeWork
    101 https://www.grid.ac/institutes/grid.7367.5 schema:alternateName University of Basilicata
    102 schema:name Facoltá di Scienze M.F.N, Università della Basilicata, Potenza, Italy
    103 rdf:type schema:Organization
    104 https://www.grid.ac/institutes/grid.7644.1 schema:alternateName University of Bari Aldo Moro
    105 schema:name Dipartimento di Fisica, Università degli studi di Bari, Via Amendola 165, I-70126 Bari, Italy
    106 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...