Ontology type: schema:Chapter
1991
AUTHORSC. Bardos , F. Golse , D. Levermore
ABSTRACTThe connection between discrete velocity kinetic theory and fluid dynamics is systematically described. Conditions that formally lead to generalized compressible Euler equations or to generalized incompressible Navier-Stokes equations are given. These conditions are related to an H-theorem. It is proven that a large class of polynomial collision operators in semidetailed balance satisfies this H-theorem. Finally, results are given concerning the global validity in time of the convergence for the case where the formal scaling of the kinetic equation leads to the linearized incompressible Navier-Stokes limit. More... »
PAGES57-71
Advances in Kinetic Theory and Continuum Mechanics
ISBN
978-3-642-50237-8
978-3-642-50235-4
http://scigraph.springernature.com/pub.10.1007/978-3-642-50235-4_6
DOIhttp://dx.doi.org/10.1007/978-3-642-50235-4_6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1007097945
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Paris Diderot University",
"id": "https://www.grid.ac/institutes/grid.7452.4",
"name": [
"D\u00e9partement de Math\u00e9matiques, Universit\u00e9 Paris VII, F-75251\u00a0Paris Cedex 05, France"
],
"type": "Organization"
},
"familyName": "Bardos",
"givenName": "C.",
"id": "sg:person.014224365351.76",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014224365351.76"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Paris Diderot University",
"id": "https://www.grid.ac/institutes/grid.7452.4",
"name": [
"D\u00e9partement de Math\u00e9matiques, Universit\u00e9 Paris VII, F-75251\u00a0Paris Cedex 05, France"
],
"type": "Organization"
},
"familyName": "Golse",
"givenName": "F.",
"id": "sg:person.015753012636.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015753012636.03"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Arizona",
"id": "https://www.grid.ac/institutes/grid.134563.6",
"name": [
"Department of Mathematics, University of Arizona, Tucson, AZ\u00a085721, USA"
],
"type": "Organization"
},
"familyName": "Levermore",
"givenName": "D.",
"id": "sg:person.014173467443.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014173467443.78"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/0022-1236(88)90051-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022007736"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01609490",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024924697",
"https://doi.org/10.1007/bf01609490"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01609490",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024924697",
"https://doi.org/10.1007/bf01609490"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02547354",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026181143",
"https://doi.org/10.1007/bf02547354"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01210741",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027192017",
"https://doi.org/10.1007/bf01210741"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01210741",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027192017",
"https://doi.org/10.1007/bf01210741"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.56.1505",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060792961"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.56.1505",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060792961"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1971423",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069676692"
],
"type": "CreativeWork"
}
],
"datePublished": "1991",
"datePublishedReg": "1991-01-01",
"description": "The connection between discrete velocity kinetic theory and fluid dynamics is systematically described. Conditions that formally lead to generalized compressible Euler equations or to generalized incompressible Navier-Stokes equations are given. These conditions are related to an H-theorem. It is proven that a large class of polynomial collision operators in semidetailed balance satisfies this H-theorem. Finally, results are given concerning the global validity in time of the convergence for the case where the formal scaling of the kinetic equation leads to the linearized incompressible Navier-Stokes limit.",
"editor": [
{
"familyName": "Gatignol",
"givenName": "Ren\u00e9e",
"type": "Person"
},
{
"familyName": "Soubbaramayer",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-50235-4_6",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-50237-8",
"978-3-642-50235-4"
],
"name": "Advances in Kinetic Theory and Continuum Mechanics",
"type": "Book"
},
"name": "Fluid Dynamic Limits of Discrete Velocity Kinetic Equations",
"pagination": "57-71",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-50235-4_6"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"21cfc1db3510cb05c5ba0ed6faa83de67749c64861690c5b9cbb1b01d016a8ae"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1007097945"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-50235-4_6",
"https://app.dimensions.ai/details/publication/pub.1007097945"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T13:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000247.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-642-50235-4_6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-50235-4_6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-50235-4_6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-50235-4_6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-50235-4_6'
This table displays all metadata directly associated to this object as RDF triples.
107 TRIPLES
23 PREDICATES
33 URIs
20 LITERALS
8 BLANK NODES