Fluid Dynamic Limits of Discrete Velocity Kinetic Equations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1991

AUTHORS

C. Bardos , F. Golse , D. Levermore

ABSTRACT

The connection between discrete velocity kinetic theory and fluid dynamics is systematically described. Conditions that formally lead to generalized compressible Euler equations or to generalized incompressible Navier-Stokes equations are given. These conditions are related to an H-theorem. It is proven that a large class of polynomial collision operators in semidetailed balance satisfies this H-theorem. Finally, results are given concerning the global validity in time of the convergence for the case where the formal scaling of the kinetic equation leads to the linearized incompressible Navier-Stokes limit. More... »

PAGES

57-71

References to SciGraph publications

Book

TITLE

Advances in Kinetic Theory and Continuum Mechanics

ISBN

978-3-642-50237-8
978-3-642-50235-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-50235-4_6

DOI

http://dx.doi.org/10.1007/978-3-642-50235-4_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007097945


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "D\u00e9partement de Math\u00e9matiques, Universit\u00e9 Paris VII, F-75251\u00a0Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bardos", 
        "givenName": "C.", 
        "id": "sg:person.014224365351.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014224365351.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "D\u00e9partement de Math\u00e9matiques, Universit\u00e9 Paris VII, F-75251\u00a0Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Golse", 
        "givenName": "F.", 
        "id": "sg:person.015753012636.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015753012636.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Department of Mathematics, University of Arizona, Tucson, AZ\u00a085721, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levermore", 
        "givenName": "D.", 
        "id": "sg:person.014173467443.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014173467443.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-1236(88)90051-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022007736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024924697", 
          "https://doi.org/10.1007/bf01609490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024924697", 
          "https://doi.org/10.1007/bf01609490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02547354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026181143", 
          "https://doi.org/10.1007/bf02547354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01210741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027192017", 
          "https://doi.org/10.1007/bf01210741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01210741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027192017", 
          "https://doi.org/10.1007/bf01210741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1971423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676692"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991", 
    "datePublishedReg": "1991-01-01", 
    "description": "The connection between discrete velocity kinetic theory and fluid dynamics is systematically described. Conditions that formally lead to generalized compressible Euler equations or to generalized incompressible Navier-Stokes equations are given. These conditions are related to an H-theorem. It is proven that a large class of polynomial collision operators in semidetailed balance satisfies this H-theorem. Finally, results are given concerning the global validity in time of the convergence for the case where the formal scaling of the kinetic equation leads to the linearized incompressible Navier-Stokes limit.", 
    "editor": [
      {
        "familyName": "Gatignol", 
        "givenName": "Ren\u00e9e", 
        "type": "Person"
      }, 
      {
        "familyName": "Soubbaramayer", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-50235-4_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-50237-8", 
        "978-3-642-50235-4"
      ], 
      "name": "Advances in Kinetic Theory and Continuum Mechanics", 
      "type": "Book"
    }, 
    "name": "Fluid Dynamic Limits of Discrete Velocity Kinetic Equations", 
    "pagination": "57-71", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-50235-4_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "21cfc1db3510cb05c5ba0ed6faa83de67749c64861690c5b9cbb1b01d016a8ae"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007097945"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-50235-4_6", 
      "https://app.dimensions.ai/details/publication/pub.1007097945"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000247.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-50235-4_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-50235-4_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-50235-4_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-50235-4_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-50235-4_6'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-50235-4_6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N032be8d533064c79a3bbdd0fe80fa426
4 schema:citation sg:pub.10.1007/bf01210741
5 sg:pub.10.1007/bf01609490
6 sg:pub.10.1007/bf02547354
7 https://doi.org/10.1016/0022-1236(88)90051-1
8 https://doi.org/10.1103/physrevlett.56.1505
9 https://doi.org/10.2307/1971423
10 schema:datePublished 1991
11 schema:datePublishedReg 1991-01-01
12 schema:description The connection between discrete velocity kinetic theory and fluid dynamics is systematically described. Conditions that formally lead to generalized compressible Euler equations or to generalized incompressible Navier-Stokes equations are given. These conditions are related to an H-theorem. It is proven that a large class of polynomial collision operators in semidetailed balance satisfies this H-theorem. Finally, results are given concerning the global validity in time of the convergence for the case where the formal scaling of the kinetic equation leads to the linearized incompressible Navier-Stokes limit.
13 schema:editor N3a8cb66c10344c75a58700ab8f2a8b29
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N4f8782fc39c94aa382f38fcbf22619ef
18 schema:name Fluid Dynamic Limits of Discrete Velocity Kinetic Equations
19 schema:pagination 57-71
20 schema:productId N6e9eb632744641cb96a87b03f6d48416
21 Ndd24008ca3254158944a39734c32a764
22 Nddac9e2d530643fbb0d267aeca5c9aa6
23 schema:publisher Nee1d6dc8993c4c5e92f6633d0af07175
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007097945
25 https://doi.org/10.1007/978-3-642-50235-4_6
26 schema:sdDatePublished 2019-04-15T13:25
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N458ea8509b004a3289ebf4c8c58e7add
29 schema:url http://link.springer.com/10.1007/978-3-642-50235-4_6
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N032be8d533064c79a3bbdd0fe80fa426 rdf:first sg:person.014224365351.76
34 rdf:rest N8397252d76e54df4a1d5a52582a696b9
35 N3a8cb66c10344c75a58700ab8f2a8b29 rdf:first N909324822e784646a35257b14d810c38
36 rdf:rest N658dd22f19bb4f5b8adfc799e035741a
37 N458ea8509b004a3289ebf4c8c58e7add schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N4f8782fc39c94aa382f38fcbf22619ef schema:isbn 978-3-642-50235-4
40 978-3-642-50237-8
41 schema:name Advances in Kinetic Theory and Continuum Mechanics
42 rdf:type schema:Book
43 N658dd22f19bb4f5b8adfc799e035741a rdf:first Ne92bd9de5a68484dab13e60808bf4a19
44 rdf:rest rdf:nil
45 N6e9eb632744641cb96a87b03f6d48416 schema:name readcube_id
46 schema:value 21cfc1db3510cb05c5ba0ed6faa83de67749c64861690c5b9cbb1b01d016a8ae
47 rdf:type schema:PropertyValue
48 N8397252d76e54df4a1d5a52582a696b9 rdf:first sg:person.015753012636.03
49 rdf:rest N879c1accf1f741f4bf0ad235dd2af82b
50 N879c1accf1f741f4bf0ad235dd2af82b rdf:first sg:person.014173467443.78
51 rdf:rest rdf:nil
52 N909324822e784646a35257b14d810c38 schema:familyName Gatignol
53 schema:givenName Renée
54 rdf:type schema:Person
55 Ndd24008ca3254158944a39734c32a764 schema:name dimensions_id
56 schema:value pub.1007097945
57 rdf:type schema:PropertyValue
58 Nddac9e2d530643fbb0d267aeca5c9aa6 schema:name doi
59 schema:value 10.1007/978-3-642-50235-4_6
60 rdf:type schema:PropertyValue
61 Ne92bd9de5a68484dab13e60808bf4a19 schema:familyName Soubbaramayer
62 rdf:type schema:Person
63 Nee1d6dc8993c4c5e92f6633d0af07175 schema:location Berlin, Heidelberg
64 schema:name Springer Berlin Heidelberg
65 rdf:type schema:Organisation
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:person.014173467443.78 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
73 schema:familyName Levermore
74 schema:givenName D.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014173467443.78
76 rdf:type schema:Person
77 sg:person.014224365351.76 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
78 schema:familyName Bardos
79 schema:givenName C.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014224365351.76
81 rdf:type schema:Person
82 sg:person.015753012636.03 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
83 schema:familyName Golse
84 schema:givenName F.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015753012636.03
86 rdf:type schema:Person
87 sg:pub.10.1007/bf01210741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027192017
88 https://doi.org/10.1007/bf01210741
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf01609490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024924697
91 https://doi.org/10.1007/bf01609490
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf02547354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026181143
94 https://doi.org/10.1007/bf02547354
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0022-1236(88)90051-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022007736
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrevlett.56.1505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792961
99 rdf:type schema:CreativeWork
100 https://doi.org/10.2307/1971423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676692
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.134563.6 schema:alternateName University of Arizona
103 schema:name Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA
104 rdf:type schema:Organization
105 https://www.grid.ac/institutes/grid.7452.4 schema:alternateName Paris Diderot University
106 schema:name Département de Mathématiques, Université Paris VII, F-75251 Paris Cedex 05, France
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...