A Fast Algorithm for Robust Principal Components Based on Projection Pursuit View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1996

AUTHORS

C. Croux , A. Ruiz-Gazen

ABSTRACT

One of the aims of a principal component analysis (PCA) is to reduce the dimensionality of a collection of observations. If we plot the first two principal components of the observations, it is often the case that one can already detect the main structure of the data. Another aim is to detect atypical observations in a graphical way, by looking at outlying observations on the principal axes. More... »

PAGES

211-216

References to SciGraph publications

  • 1985. Multivariate Estimation with High Breakdown Point in MATHEMATICAL STATISTICS AND APPLICATIONS
  • Book

    TITLE

    COMPSTAT

    ISBN

    978-3-7908-0953-4
    978-3-642-46992-3

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-46992-3_22

    DOI

    http://dx.doi.org/10.1007/978-3-642-46992-3_22

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014224380


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Vrije Universiteit Brussel", 
              "id": "https://www.grid.ac/institutes/grid.8767.e", 
              "name": [
                "Faculty of Economics, C.E.M.E., University of Brussels (U.L.B.), C.P.-139, Av. F.D.-Roosevelt 50, B-1050\u00a0Brussels, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Croux", 
            "givenName": "C.", 
            "id": "sg:person.015675633543.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015675633543.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Paul Sabatier University", 
              "id": "https://www.grid.ac/institutes/grid.15781.3a", 
              "name": [
                "Laboratoire de Statistique et de Probabilit\u00e9s Route de Narbonne, Universit\u00e9 Paul Sabatier, 31062\u00a0Toulouse Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ruiz-Gazen", 
            "givenName": "A.", 
            "id": "sg:person.015635363725.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015635363725.42"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1080/10485259508832620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023856524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aos/1176349519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064408863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-5438-0_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089521729", 
              "https://doi.org/10.1007/978-94-009-5438-0_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-5438-0_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089521729", 
              "https://doi.org/10.1007/978-94-009-5438-0_20"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1996", 
        "datePublishedReg": "1996-01-01", 
        "description": "One of the aims of a principal component analysis (PCA) is to reduce the dimensionality of a collection of observations. If we plot the first two principal components of the observations, it is often the case that one can already detect the main structure of the data. Another aim is to detect atypical observations in a graphical way, by looking at outlying observations on the principal axes.", 
        "editor": [
          {
            "familyName": "Prat", 
            "givenName": "Albert", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-46992-3_22", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-7908-0953-4", 
            "978-3-642-46992-3"
          ], 
          "name": "COMPSTAT", 
          "type": "Book"
        }, 
        "name": "A Fast Algorithm for Robust Principal Components Based on Projection Pursuit", 
        "pagination": "211-216", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-46992-3_22"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "43c401dc18e3bf4a044e7a874e2f123635a7d90971b51f74f889a4d57c8e7a2c"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014224380"
            ]
          }
        ], 
        "publisher": {
          "location": "Heidelberg", 
          "name": "Physica-Verlag HD", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-46992-3_22", 
          "https://app.dimensions.ai/details/publication/pub.1014224380"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T13:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000251.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-46992-3_22"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-46992-3_22'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-46992-3_22'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-46992-3_22'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-46992-3_22'


     

    This table displays all metadata directly associated to this object as RDF triples.

    85 TRIPLES      23 PREDICATES      30 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-46992-3_22 schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 schema:author N1a65e530fea14792a7677ab66cb39a00
    4 schema:citation sg:pub.10.1007/978-94-009-5438-0_20
    5 https://doi.org/10.1080/10485259508832620
    6 https://doi.org/10.1214/aos/1176349519
    7 schema:datePublished 1996
    8 schema:datePublishedReg 1996-01-01
    9 schema:description One of the aims of a principal component analysis (PCA) is to reduce the dimensionality of a collection of observations. If we plot the first two principal components of the observations, it is often the case that one can already detect the main structure of the data. Another aim is to detect atypical observations in a graphical way, by looking at outlying observations on the principal axes.
    10 schema:editor Naf002e5ee3b74f1780f9748dba4394f1
    11 schema:genre chapter
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N27391fb9a6ee40dd830672f9c9f46af5
    15 schema:name A Fast Algorithm for Robust Principal Components Based on Projection Pursuit
    16 schema:pagination 211-216
    17 schema:productId Na2a652153dde4082b2cc39f3fe6f218b
    18 Ncf517ff25a4a4051bbe45288b5416c8b
    19 Neeb72d93d3c74b268e44db9378cdbfa0
    20 schema:publisher N11afca85f7e04f05ac90874d23742c5e
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014224380
    22 https://doi.org/10.1007/978-3-642-46992-3_22
    23 schema:sdDatePublished 2019-04-15T13:26
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher Ncfe4d4cc5d86408a961813d7c3b586cd
    26 schema:url http://link.springer.com/10.1007/978-3-642-46992-3_22
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset chapters
    29 rdf:type schema:Chapter
    30 N11afca85f7e04f05ac90874d23742c5e schema:location Heidelberg
    31 schema:name Physica-Verlag HD
    32 rdf:type schema:Organisation
    33 N1a65e530fea14792a7677ab66cb39a00 rdf:first sg:person.015675633543.22
    34 rdf:rest N7440c3ee4421465ebc4a160fc0375eae
    35 N27391fb9a6ee40dd830672f9c9f46af5 schema:isbn 978-3-642-46992-3
    36 978-3-7908-0953-4
    37 schema:name COMPSTAT
    38 rdf:type schema:Book
    39 N7440c3ee4421465ebc4a160fc0375eae rdf:first sg:person.015635363725.42
    40 rdf:rest rdf:nil
    41 N8b33ff46b8084357a6a7e5a3a3589e28 schema:familyName Prat
    42 schema:givenName Albert
    43 rdf:type schema:Person
    44 Na2a652153dde4082b2cc39f3fe6f218b schema:name readcube_id
    45 schema:value 43c401dc18e3bf4a044e7a874e2f123635a7d90971b51f74f889a4d57c8e7a2c
    46 rdf:type schema:PropertyValue
    47 Naf002e5ee3b74f1780f9748dba4394f1 rdf:first N8b33ff46b8084357a6a7e5a3a3589e28
    48 rdf:rest rdf:nil
    49 Ncf517ff25a4a4051bbe45288b5416c8b schema:name doi
    50 schema:value 10.1007/978-3-642-46992-3_22
    51 rdf:type schema:PropertyValue
    52 Ncfe4d4cc5d86408a961813d7c3b586cd schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 Neeb72d93d3c74b268e44db9378cdbfa0 schema:name dimensions_id
    55 schema:value pub.1014224380
    56 rdf:type schema:PropertyValue
    57 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Physical Sciences
    59 rdf:type schema:DefinedTerm
    60 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Astronomical and Space Sciences
    62 rdf:type schema:DefinedTerm
    63 sg:person.015635363725.42 schema:affiliation https://www.grid.ac/institutes/grid.15781.3a
    64 schema:familyName Ruiz-Gazen
    65 schema:givenName A.
    66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015635363725.42
    67 rdf:type schema:Person
    68 sg:person.015675633543.22 schema:affiliation https://www.grid.ac/institutes/grid.8767.e
    69 schema:familyName Croux
    70 schema:givenName C.
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015675633543.22
    72 rdf:type schema:Person
    73 sg:pub.10.1007/978-94-009-5438-0_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089521729
    74 https://doi.org/10.1007/978-94-009-5438-0_20
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1080/10485259508832620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023856524
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1214/aos/1176349519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408863
    79 rdf:type schema:CreativeWork
    80 https://www.grid.ac/institutes/grid.15781.3a schema:alternateName Paul Sabatier University
    81 schema:name Laboratoire de Statistique et de Probabilités Route de Narbonne, Université Paul Sabatier, 31062 Toulouse Cedex, France
    82 rdf:type schema:Organization
    83 https://www.grid.ac/institutes/grid.8767.e schema:alternateName Vrije Universiteit Brussel
    84 schema:name Faculty of Economics, C.E.M.E., University of Brussels (U.L.B.), C.P.-139, Av. F.D.-Roosevelt 50, B-1050 Brussels, Belgium
    85 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...