Effects of Holding-Field Noise on Optical Switching View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1986

AUTHORS

P. Filipowicz , J. C. Garrison , P. Meystre , E. M. Wright

ABSTRACT

The proposed use of optically bistable systems as logical switches raises the question of stability against noise. Among the various sources of noise [1], the most important in practice will probably be fluctuations in the amplitude and frequency of the holding laser beam. It is generally accepted that this problem is governed by scaling laws which are, to a large extent, independent of the detailed description of the nonlinear medium. Previous discussions of laser noise effects have been mostly limited to absorptive systems [2–4] and/or to the mean field limit [1,5]. There are many experiments, particularly those employing semiconductors, for which these conditions are not satisfied. The main goal of this paper is to complement the analyses of Ref. 1–5 by a theory of laser-induced noise which explicitly includes propagation effects and is not restricted to the mean field limit. To this end we consider a purely dispersive medium with a nonlinear susceptibility described by a Debye relaxation equation. We assume a ring cavity configuration with moderate finesse and large bandwidth (short roundtrip time), as is typically the case in device applications. More... »

PAGES

206-208

Book

TITLE

Optical Bistability III

ISBN

978-3-642-46582-6
978-3-642-46580-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-46580-2_56

DOI

http://dx.doi.org/10.1007/978-3-642-46580-2_56

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012385568


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Quantenoptik, D-8046, Garching, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450272.6", 
          "name": [
            "Max-Planck-Institut f\u00fcr Quantenoptik, D-8046, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Filipowicz", 
        "givenName": "P.", 
        "id": "sg:person.015674431155.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015674431155.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Quantenoptik, D-8046, Garching, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450272.6", 
          "name": [
            "Max-Planck-Institut f\u00fcr Quantenoptik, D-8046, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garrison", 
        "givenName": "J. C.", 
        "id": "sg:person.014452325630.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014452325630.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Quantenoptik, D-8046, Garching, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450272.6", 
          "name": [
            "Max-Planck-Institut f\u00fcr Quantenoptik, D-8046, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meystre", 
        "givenName": "P.", 
        "id": "sg:person.010042543335.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042543335.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Quantenoptik, D-8046, Garching, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450272.6", 
          "name": [
            "Max-Planck-Institut f\u00fcr Quantenoptik, D-8046, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wright", 
        "givenName": "E. M.", 
        "id": "sg:person.015530547422.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015530547422.38"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1986", 
    "datePublishedReg": "1986-01-01", 
    "description": "The proposed use of optically bistable systems as logical switches raises the question of stability against noise. Among the various sources of noise [1], the most important in practice will probably be fluctuations in the amplitude and frequency of the holding laser beam. It is generally accepted that this problem is governed by scaling laws which are, to a large extent, independent of the detailed description of the nonlinear medium. Previous discussions of laser noise effects have been mostly limited to absorptive systems [2\u20134] and/or to the mean field limit [1,5]. There are many experiments, particularly those employing semiconductors, for which these conditions are not satisfied. The main goal of this paper is to complement the analyses of Ref. 1\u20135 by a theory of laser-induced noise which explicitly includes propagation effects and is not restricted to the mean field limit. To this end we consider a purely dispersive medium with a nonlinear susceptibility described by a Debye relaxation equation. We assume a ring cavity configuration with moderate finesse and large bandwidth (short roundtrip time), as is typically the case in device applications.", 
    "editor": [
      {
        "familyName": "Gibbs", 
        "givenName": "Hyatt M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Mandel", 
        "givenName": "Paul", 
        "type": "Person"
      }, 
      {
        "familyName": "Peyghambarian", 
        "givenName": "Nasser", 
        "type": "Person"
      }, 
      {
        "familyName": "Smith", 
        "givenName": "S. Desmond", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-46580-2_56", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-46582-6", 
        "978-3-642-46580-2"
      ], 
      "name": "Optical Bistability III", 
      "type": "Book"
    }, 
    "keywords": [
      "field limit", 
      "mean field limit", 
      "moderate finesse", 
      "optical switching", 
      "nonlinear susceptibility", 
      "laser beam", 
      "ring cavity configuration", 
      "nonlinear media", 
      "device applications", 
      "cavity configuration", 
      "sources of noise", 
      "dispersive media", 
      "propagation effects", 
      "logical switches", 
      "large bandwidth", 
      "question of stability", 
      "bistable system", 
      "Ref. 1", 
      "relaxation equation", 
      "beam", 
      "semiconductors", 
      "finesse", 
      "absorptive system", 
      "noise", 
      "noise effects", 
      "limit", 
      "detailed description", 
      "fluctuations", 
      "switching", 
      "amplitude", 
      "configuration", 
      "bandwidth", 
      "source", 
      "previous discussions", 
      "theory", 
      "frequency", 
      "medium", 
      "experiments", 
      "effect", 
      "description", 
      "equations", 
      "system", 
      "switch", 
      "applications", 
      "main goal", 
      "large extent", 
      "stability", 
      "law", 
      "susceptibility", 
      "conditions", 
      "cases", 
      "discussion", 
      "analysis", 
      "use", 
      "paper", 
      "end", 
      "problem", 
      "goal", 
      "questions", 
      "extent", 
      "practice", 
      "Debye relaxation equation", 
      "laser noise effects", 
      "laser-induced noise", 
      "Holding-Field Noise"
    ], 
    "name": "Effects of Holding-Field Noise on Optical Switching", 
    "pagination": "206-208", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012385568"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-46580-2_56"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-46580-2_56", 
      "https://app.dimensions.ai/details/publication/pub.1012385568"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_141.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-46580-2_56"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-46580-2_56'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-46580-2_56'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-46580-2_56'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-46580-2_56'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      23 PREDICATES      91 URIs      84 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-46580-2_56 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Nfa6bc7e08d054f9bb92838061baffd0c
4 schema:datePublished 1986
5 schema:datePublishedReg 1986-01-01
6 schema:description The proposed use of optically bistable systems as logical switches raises the question of stability against noise. Among the various sources of noise [1], the most important in practice will probably be fluctuations in the amplitude and frequency of the holding laser beam. It is generally accepted that this problem is governed by scaling laws which are, to a large extent, independent of the detailed description of the nonlinear medium. Previous discussions of laser noise effects have been mostly limited to absorptive systems [2–4] and/or to the mean field limit [1,5]. There are many experiments, particularly those employing semiconductors, for which these conditions are not satisfied. The main goal of this paper is to complement the analyses of Ref. 1–5 by a theory of laser-induced noise which explicitly includes propagation effects and is not restricted to the mean field limit. To this end we consider a purely dispersive medium with a nonlinear susceptibility described by a Debye relaxation equation. We assume a ring cavity configuration with moderate finesse and large bandwidth (short roundtrip time), as is typically the case in device applications.
7 schema:editor Naa8bfe5a70ce4ae9bd5fc94c7fdb24fd
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nddba3d09a8d44934a7a1f50766952ce9
12 schema:keywords Debye relaxation equation
13 Holding-Field Noise
14 Ref. 1
15 absorptive system
16 amplitude
17 analysis
18 applications
19 bandwidth
20 beam
21 bistable system
22 cases
23 cavity configuration
24 conditions
25 configuration
26 description
27 detailed description
28 device applications
29 discussion
30 dispersive media
31 effect
32 end
33 equations
34 experiments
35 extent
36 field limit
37 finesse
38 fluctuations
39 frequency
40 goal
41 large bandwidth
42 large extent
43 laser beam
44 laser noise effects
45 laser-induced noise
46 law
47 limit
48 logical switches
49 main goal
50 mean field limit
51 medium
52 moderate finesse
53 noise
54 noise effects
55 nonlinear media
56 nonlinear susceptibility
57 optical switching
58 paper
59 practice
60 previous discussions
61 problem
62 propagation effects
63 question of stability
64 questions
65 relaxation equation
66 ring cavity configuration
67 semiconductors
68 source
69 sources of noise
70 stability
71 susceptibility
72 switch
73 switching
74 system
75 theory
76 use
77 schema:name Effects of Holding-Field Noise on Optical Switching
78 schema:pagination 206-208
79 schema:productId Nbe0c904731144fa2b61e3df56269d466
80 Ndf40ab36a02e401884597fc3140e8c60
81 schema:publisher N9371a1a9ca3b48a99e6f6f694ae1695d
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012385568
83 https://doi.org/10.1007/978-3-642-46580-2_56
84 schema:sdDatePublished 2022-01-01T19:09
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N7644b7eca74c4136bfe447b3fe52da8d
87 schema:url https://doi.org/10.1007/978-3-642-46580-2_56
88 sgo:license sg:explorer/license/
89 sgo:sdDataset chapters
90 rdf:type schema:Chapter
91 N01a4826f43e5414b88c41eeffbffd52c rdf:first Nc830f6bf5fc34496b5a867f2c60924ee
92 rdf:rest N3a7409108a2d4b759bd91a73c895912b
93 N0aa1ba0a63014c76bd9bed58deffd8f8 schema:familyName Smith
94 schema:givenName S. Desmond
95 rdf:type schema:Person
96 N3a7409108a2d4b759bd91a73c895912b rdf:first Ndbcdaf0d837942e1874cbc213ba7527c
97 rdf:rest N6796bc1f9ab54da48868c8a91fe154c9
98 N4551313ea30f4a4f9e24d83d9c636d5a rdf:first sg:person.014452325630.68
99 rdf:rest Na902dcfa312b41b2870070c10d91d424
100 N61442e844cb24387a159b684cfaebc67 schema:familyName Gibbs
101 schema:givenName Hyatt M.
102 rdf:type schema:Person
103 N6796bc1f9ab54da48868c8a91fe154c9 rdf:first N0aa1ba0a63014c76bd9bed58deffd8f8
104 rdf:rest rdf:nil
105 N7644b7eca74c4136bfe447b3fe52da8d schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N9371a1a9ca3b48a99e6f6f694ae1695d schema:name Springer Nature
108 rdf:type schema:Organisation
109 N9da0f7e0b70e47f0a5cde0bec5ad5815 rdf:first sg:person.015530547422.38
110 rdf:rest rdf:nil
111 Na902dcfa312b41b2870070c10d91d424 rdf:first sg:person.010042543335.11
112 rdf:rest N9da0f7e0b70e47f0a5cde0bec5ad5815
113 Naa8bfe5a70ce4ae9bd5fc94c7fdb24fd rdf:first N61442e844cb24387a159b684cfaebc67
114 rdf:rest N01a4826f43e5414b88c41eeffbffd52c
115 Nbe0c904731144fa2b61e3df56269d466 schema:name dimensions_id
116 schema:value pub.1012385568
117 rdf:type schema:PropertyValue
118 Nc830f6bf5fc34496b5a867f2c60924ee schema:familyName Mandel
119 schema:givenName Paul
120 rdf:type schema:Person
121 Ndbcdaf0d837942e1874cbc213ba7527c schema:familyName Peyghambarian
122 schema:givenName Nasser
123 rdf:type schema:Person
124 Nddba3d09a8d44934a7a1f50766952ce9 schema:isbn 978-3-642-46580-2
125 978-3-642-46582-6
126 schema:name Optical Bistability III
127 rdf:type schema:Book
128 Ndf40ab36a02e401884597fc3140e8c60 schema:name doi
129 schema:value 10.1007/978-3-642-46580-2_56
130 rdf:type schema:PropertyValue
131 Nfa6bc7e08d054f9bb92838061baffd0c rdf:first sg:person.015674431155.93
132 rdf:rest N4551313ea30f4a4f9e24d83d9c636d5a
133 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
134 schema:name Physical Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
137 schema:name Optical Physics
138 rdf:type schema:DefinedTerm
139 sg:person.010042543335.11 schema:affiliation grid-institutes:grid.450272.6
140 schema:familyName Meystre
141 schema:givenName P.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042543335.11
143 rdf:type schema:Person
144 sg:person.014452325630.68 schema:affiliation grid-institutes:grid.450272.6
145 schema:familyName Garrison
146 schema:givenName J. C.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014452325630.68
148 rdf:type schema:Person
149 sg:person.015530547422.38 schema:affiliation grid-institutes:grid.450272.6
150 schema:familyName Wright
151 schema:givenName E. M.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015530547422.38
153 rdf:type schema:Person
154 sg:person.015674431155.93 schema:affiliation grid-institutes:grid.450272.6
155 schema:familyName Filipowicz
156 schema:givenName P.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015674431155.93
158 rdf:type schema:Person
159 grid-institutes:grid.450272.6 schema:alternateName Max-Planck-Institut für Quantenoptik, D-8046, Garching, Germany
160 schema:name Max-Planck-Institut für Quantenoptik, D-8046, Garching, Germany
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...