Flame Classification through the Use of an Artificial Neural Network Trained with a Genetic Algorithm View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Juan Carlos Gómez , Fernando Hernández , Carlos A. Coello Coello , Guillermo Ronquillo , Antonio Trejo

ABSTRACT

This paper introduces a Genetic Algorithm (GA) for training Artificial Neural Networks (ANNs) using the electromagnetic spectrum signal of a combustion process for flame pattern classification. Combustion requires identification systems that provide information about the state of the process in order to make combustion more efficient and clean. Combustion is complex to model using conventional deterministic methods thus motivate the use of heuristics in this domain. ANNs have been successfully applied to combustion classification systems; however, traditional ANN training methods get often trapped in local minima of the error function and are inefficient in multimodal and non-differentiable functions. A GA is used here to overcome these problems. The proposed GA finds the weights of an ANN than best fits the training pattern with the highest classification rate. More... »

PAGES

172-184

References to SciGraph publications

  • 2009. A Genetic Algorithm for ANN Design, Training and Simplification in BIO-INSPIRED SYSTEMS: COMPUTATIONAL AND AMBIENT INTELLIGENCE
  • Book

    TITLE

    Advances in Soft Computing and Its Applications

    ISBN

    978-3-642-45110-2
    978-3-642-45111-9

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-45111-9_15

    DOI

    http://dx.doi.org/10.1007/978-3-642-45111-9_15

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1000520111


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Applied Research Management, CIDESI, Queretaro, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "G\u00f3mez", 
            "givenName": "Juan Carlos", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Applied Research Management, CIDESI, Queretaro, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hern\u00e1ndez", 
            "givenName": "Fernando", 
            "id": "sg:person.014305326562.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014305326562.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto Polit\u00e9cnico Nacional", 
              "id": "https://www.grid.ac/institutes/grid.418275.d", 
              "name": [
                "Computer Science Department, CINVESTAV-IPN, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Coello", 
            "givenName": "Carlos A. Coello", 
            "id": "sg:person.012160505340.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Applied Research Management, CIDESI, Queretaro, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ronquillo", 
            "givenName": "Guillermo", 
            "id": "sg:person.012163120362.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012163120362.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Applied Research Management, CIDESI, Queretaro, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Trejo", 
            "givenName": "Antonio", 
            "id": "sg:person.015151022362.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015151022362.77"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-02478-8_49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002977578", 
              "https://doi.org/10.1007/978-3-642-02478-8_49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02478-8_49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002977578", 
              "https://doi.org/10.1007/978-3-642-02478-8_49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fuel.2003.10.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008324728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0893-6080(05)80056-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014360644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0893-6080(05)80056-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014360644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemolab.2010.10.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022787834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1468-0394.2011.00605.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027463428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-9236(97)00040-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045809887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-3820(03)00155-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048240126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-3820(03)00155-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048240126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/5.784219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061180067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mci.2007.913386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061392323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tim.2004.830573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061636029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2005.844858", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061716839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ist.2012.6295594", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094457131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccis.2004.1460754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094877645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccis.2004.1460754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094877645"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013", 
        "datePublishedReg": "2013-01-01", 
        "description": "This paper introduces a Genetic Algorithm (GA) for training Artificial Neural Networks (ANNs) using the electromagnetic spectrum signal of a combustion process for flame pattern classification. Combustion requires identification systems that provide information about the state of the process in order to make combustion more efficient and clean. Combustion is complex to model using conventional deterministic methods thus motivate the use of heuristics in this domain. ANNs have been successfully applied to combustion classification systems; however, traditional ANN training methods get often trapped in local minima of the error function and are inefficient in multimodal and non-differentiable functions. A GA is used here to overcome these problems. The proposed GA finds the weights of an ANN than best fits the training pattern with the highest classification rate.", 
        "editor": [
          {
            "familyName": "Castro", 
            "givenName": "F\u00e9lix", 
            "type": "Person"
          }, 
          {
            "familyName": "Gelbukh", 
            "givenName": "Alexander", 
            "type": "Person"
          }, 
          {
            "familyName": "Gonz\u00e1lez", 
            "givenName": "Miguel", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-45111-9_15", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-45110-2", 
            "978-3-642-45111-9"
          ], 
          "name": "Advances in Soft Computing and Its Applications", 
          "type": "Book"
        }, 
        "name": "Flame Classification through the Use of an Artificial Neural Network Trained with a Genetic Algorithm", 
        "pagination": "172-184", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-45111-9_15"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0279bad60cc1f9fe06629ab92f26a46da433bdc8e0b12c95924f77f435a46dc7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1000520111"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-45111-9_15", 
          "https://app.dimensions.ai/details/publication/pub.1000520111"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T10:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000243.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-45111-9_15"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-45111-9_15'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-45111-9_15'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-45111-9_15'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-45111-9_15'


     

    This table displays all metadata directly associated to this object as RDF triples.

    150 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-45111-9_15 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N2a8caf942dea40e1802b3abbaec28d1a
    4 schema:citation sg:pub.10.1007/978-3-642-02478-8_49
    5 https://doi.org/10.1016/j.chemolab.2010.10.010
    6 https://doi.org/10.1016/j.fuel.2003.10.025
    7 https://doi.org/10.1016/s0167-9236(97)00040-7
    8 https://doi.org/10.1016/s0378-3820(03)00155-3
    9 https://doi.org/10.1016/s0893-6080(05)80056-5
    10 https://doi.org/10.1109/5.784219
    11 https://doi.org/10.1109/iccis.2004.1460754
    12 https://doi.org/10.1109/ist.2012.6295594
    13 https://doi.org/10.1109/mci.2007.913386
    14 https://doi.org/10.1109/tim.2004.830573
    15 https://doi.org/10.1109/tnn.2005.844858
    16 https://doi.org/10.1111/j.1468-0394.2011.00605.x
    17 schema:datePublished 2013
    18 schema:datePublishedReg 2013-01-01
    19 schema:description This paper introduces a Genetic Algorithm (GA) for training Artificial Neural Networks (ANNs) using the electromagnetic spectrum signal of a combustion process for flame pattern classification. Combustion requires identification systems that provide information about the state of the process in order to make combustion more efficient and clean. Combustion is complex to model using conventional deterministic methods thus motivate the use of heuristics in this domain. ANNs have been successfully applied to combustion classification systems; however, traditional ANN training methods get often trapped in local minima of the error function and are inefficient in multimodal and non-differentiable functions. A GA is used here to overcome these problems. The proposed GA finds the weights of an ANN than best fits the training pattern with the highest classification rate.
    20 schema:editor N1dae6d11243c4d0499332c14149ed9bb
    21 schema:genre chapter
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf Naa1bd72640414d0d8a8b7705d51e8923
    25 schema:name Flame Classification through the Use of an Artificial Neural Network Trained with a Genetic Algorithm
    26 schema:pagination 172-184
    27 schema:productId N3e06f56816cf4ffeb6db77e8fb839fdb
    28 N8b202614e1e54070bb2374de29c7e08d
    29 Nf4aaf6a3468c48a190b40499ecdf0bad
    30 schema:publisher Nd4cc839d567040c68f26133146db2ab2
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000520111
    32 https://doi.org/10.1007/978-3-642-45111-9_15
    33 schema:sdDatePublished 2019-04-15T10:30
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N6cae5d521c3b42c58d08d295bb02b70a
    36 schema:url http://link.springer.com/10.1007/978-3-642-45111-9_15
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset chapters
    39 rdf:type schema:Chapter
    40 N00f2b4ed1cb143cd9ee6bd5de91d10c6 rdf:first sg:person.015151022362.77
    41 rdf:rest rdf:nil
    42 N0384bdd1ecff480f9b1674ce734c0efa rdf:first N9dd0ac7f251d4673bed42d9e93e3a8a1
    43 rdf:rest N151ec6995f3f43dfa9776c39b04dc842
    44 N07bf2dfe2f384497aad617902ac126c7 schema:affiliation N5bf99648c4cf4b29a8d7ee268a504a80
    45 schema:familyName Gómez
    46 schema:givenName Juan Carlos
    47 rdf:type schema:Person
    48 N151ec6995f3f43dfa9776c39b04dc842 rdf:first Nd42ce06417424990a1b8bb9a560b463f
    49 rdf:rest rdf:nil
    50 N1dae6d11243c4d0499332c14149ed9bb rdf:first N632d7771fe1a4909871c7dea74001e1d
    51 rdf:rest N0384bdd1ecff480f9b1674ce734c0efa
    52 N2a8caf942dea40e1802b3abbaec28d1a rdf:first N07bf2dfe2f384497aad617902ac126c7
    53 rdf:rest N7b2bfe108db64aa6b7fefb6d885abb1b
    54 N2fad1c885e8a4d71be3822d02d56b335 rdf:first sg:person.012160505340.13
    55 rdf:rest Nf5434608791c4827a712b542fc28e488
    56 N3e06f56816cf4ffeb6db77e8fb839fdb schema:name readcube_id
    57 schema:value 0279bad60cc1f9fe06629ab92f26a46da433bdc8e0b12c95924f77f435a46dc7
    58 rdf:type schema:PropertyValue
    59 N5bf99648c4cf4b29a8d7ee268a504a80 schema:name Applied Research Management, CIDESI, Queretaro, Mexico
    60 rdf:type schema:Organization
    61 N632d7771fe1a4909871c7dea74001e1d schema:familyName Castro
    62 schema:givenName Félix
    63 rdf:type schema:Person
    64 N6cae5d521c3b42c58d08d295bb02b70a schema:name Springer Nature - SN SciGraph project
    65 rdf:type schema:Organization
    66 N7b2bfe108db64aa6b7fefb6d885abb1b rdf:first sg:person.014305326562.79
    67 rdf:rest N2fad1c885e8a4d71be3822d02d56b335
    68 N85a8a8e7b6d94180bf1bf21478de0cc8 schema:name Applied Research Management, CIDESI, Queretaro, Mexico
    69 rdf:type schema:Organization
    70 N8b202614e1e54070bb2374de29c7e08d schema:name doi
    71 schema:value 10.1007/978-3-642-45111-9_15
    72 rdf:type schema:PropertyValue
    73 N9dd0ac7f251d4673bed42d9e93e3a8a1 schema:familyName Gelbukh
    74 schema:givenName Alexander
    75 rdf:type schema:Person
    76 Naa1bd72640414d0d8a8b7705d51e8923 schema:isbn 978-3-642-45110-2
    77 978-3-642-45111-9
    78 schema:name Advances in Soft Computing and Its Applications
    79 rdf:type schema:Book
    80 Nac9720120f2d480aa892d4746b737b9c schema:name Applied Research Management, CIDESI, Queretaro, Mexico
    81 rdf:type schema:Organization
    82 Nbe41e3b7d8be4044bb9b8ea842d9fe92 schema:name Applied Research Management, CIDESI, Queretaro, Mexico
    83 rdf:type schema:Organization
    84 Nd42ce06417424990a1b8bb9a560b463f schema:familyName González
    85 schema:givenName Miguel
    86 rdf:type schema:Person
    87 Nd4cc839d567040c68f26133146db2ab2 schema:location Berlin, Heidelberg
    88 schema:name Springer Berlin Heidelberg
    89 rdf:type schema:Organisation
    90 Nf4aaf6a3468c48a190b40499ecdf0bad schema:name dimensions_id
    91 schema:value pub.1000520111
    92 rdf:type schema:PropertyValue
    93 Nf5434608791c4827a712b542fc28e488 rdf:first sg:person.012163120362.35
    94 rdf:rest N00f2b4ed1cb143cd9ee6bd5de91d10c6
    95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Information and Computing Sciences
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Artificial Intelligence and Image Processing
    100 rdf:type schema:DefinedTerm
    101 sg:person.012160505340.13 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
    102 schema:familyName Coello
    103 schema:givenName Carlos A. Coello
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13
    105 rdf:type schema:Person
    106 sg:person.012163120362.35 schema:affiliation N85a8a8e7b6d94180bf1bf21478de0cc8
    107 schema:familyName Ronquillo
    108 schema:givenName Guillermo
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012163120362.35
    110 rdf:type schema:Person
    111 sg:person.014305326562.79 schema:affiliation Nbe41e3b7d8be4044bb9b8ea842d9fe92
    112 schema:familyName Hernández
    113 schema:givenName Fernando
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014305326562.79
    115 rdf:type schema:Person
    116 sg:person.015151022362.77 schema:affiliation Nac9720120f2d480aa892d4746b737b9c
    117 schema:familyName Trejo
    118 schema:givenName Antonio
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015151022362.77
    120 rdf:type schema:Person
    121 sg:pub.10.1007/978-3-642-02478-8_49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002977578
    122 https://doi.org/10.1007/978-3-642-02478-8_49
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.chemolab.2010.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022787834
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.fuel.2003.10.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008324728
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/s0167-9236(97)00040-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045809887
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/s0378-3820(03)00155-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048240126
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/s0893-6080(05)80056-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014360644
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1109/5.784219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061180067
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1109/iccis.2004.1460754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094877645
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1109/ist.2012.6295594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094457131
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/mci.2007.913386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061392323
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/tim.2004.830573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061636029
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/tnn.2005.844858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716839
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1111/j.1468-0394.2011.00605.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027463428
    147 rdf:type schema:CreativeWork
    148 https://www.grid.ac/institutes/grid.418275.d schema:alternateName Instituto Politécnico Nacional
    149 schema:name Computer Science Department, CINVESTAV-IPN, Mexico
    150 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...