Object Shape Recognition from EEG Signals during Tactile and Visual Exploration View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2013

AUTHORS

Anwesha Khasnobish , Amit Konar , D. N. Tibarewala , Saugat Bhattacharyya , R. Janarthanan

ABSTRACT

Humans understand the world around us by visual and tactile exploration of the objects. The objective of this paper is to recognize the object-shapes from EEG signals while the subjects are exploring the same by visual and tactile means. The various object shapes are classified from electroencephalogram (EEG) signals that are stimulated by only tactile, only visual and by both means. EEG signals were acquired and analyzed from six electrodes, namely F3,F4,FC5,FC6,O1 and O2, where each pair of electrodes are located on frontal, somato-sensory and occipital region of the brain responsible for cognitive processing, tactile and visual perception. Mu-desynchronization in alpha and beta bands is used as the EEG modality for this purpose. Power spectral density (PSD) features are extracted and classified using support vector machine (SVM) classifiers in their corresponding object-shape classes. The results showed that object-shapes are best classified from EEG signals during only tactile exploration. The object shapes classified from EEG signals during only tactile exploration yielded highest mean classification accuracy of 88.34%. The average classification accuracy over all three object exploration modalities is 83.89%. More... »

PAGES

459-464

Book

TITLE

Pattern Recognition and Machine Intelligence

ISBN

978-3-642-45061-7
978-3-642-45062-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-45062-4_63

DOI

http://dx.doi.org/10.1007/978-3-642-45062-4_63

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045519289


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "School of Bioscience and Engineering, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khasnobish", 
        "givenName": "Anwesha", 
        "id": "sg:person.01260452574.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260452574.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konar", 
        "givenName": "Amit", 
        "id": "sg:person.01337053064.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "School of Bioscience and Engineering, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tibarewala", 
        "givenName": "D. N.", 
        "id": "sg:person.010726132604.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726132604.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharyya", 
        "givenName": "Saugat", 
        "id": "sg:person.07421667055.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421667055.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Computer Science, TJS Engineering College, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Janarthanan", 
        "givenName": "R.", 
        "id": "sg:person.013316247664.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316247664.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0926-6410(00)00061-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028414246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0264619610387554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033064971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0264619610387554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033064971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/dev.20056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045372148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2207676.2207746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046650630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/21.3469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061122005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2008.926694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061740361"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Humans understand the world around us by visual and tactile exploration of the objects. The objective of this paper is to recognize the object-shapes from EEG signals while the subjects are exploring the same by visual and tactile means. The various object shapes are classified from electroencephalogram (EEG) signals that are stimulated by only tactile, only visual and by both means. EEG signals were acquired and analyzed from six electrodes, namely F3,F4,FC5,FC6,O1 and O2, where each pair of electrodes are located on frontal, somato-sensory and occipital region of the brain responsible for cognitive processing, tactile and visual perception. Mu-desynchronization in alpha and beta bands is used as the EEG modality for this purpose. Power spectral density (PSD) features are extracted and classified using support vector machine (SVM) classifiers in their corresponding object-shape classes. The results showed that object-shapes are best classified from EEG signals during only tactile exploration. The object shapes classified from EEG signals during only tactile exploration yielded highest mean classification accuracy of 88.34%. The average classification accuracy over all three object exploration modalities is 83.89%.", 
    "editor": [
      {
        "familyName": "Maji", 
        "givenName": "Pradipta", 
        "type": "Person"
      }, 
      {
        "familyName": "Ghosh", 
        "givenName": "Ashish", 
        "type": "Person"
      }, 
      {
        "familyName": "Murty", 
        "givenName": "M. Narasimha", 
        "type": "Person"
      }, 
      {
        "familyName": "Ghosh", 
        "givenName": "Kuntal", 
        "type": "Person"
      }, 
      {
        "familyName": "Pal", 
        "givenName": "Sankar K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-45062-4_63", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-45061-7", 
        "978-3-642-45062-4"
      ], 
      "name": "Pattern Recognition and Machine Intelligence", 
      "type": "Book"
    }, 
    "name": "Object Shape Recognition from EEG Signals during Tactile and Visual Exploration", 
    "pagination": "459-464", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-45062-4_63"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d8d3e4102d0ccf18ddf1c5ae5f2af4baa30016c15b489cfdc6abe20b6d11d435"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045519289"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-45062-4_63", 
      "https://app.dimensions.ai/details/publication/pub.1045519289"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000271.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-45062-4_63"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-45062-4_63'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-45062-4_63'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-45062-4_63'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-45062-4_63'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-45062-4_63 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Na8ae203f3a9f4180bfbd18141c9f259a
4 schema:citation https://doi.org/10.1002/dev.20056
5 https://doi.org/10.1016/s0926-6410(00)00061-6
6 https://doi.org/10.1109/21.3469
7 https://doi.org/10.1109/tnsre.2008.926694
8 https://doi.org/10.1145/2207676.2207746
9 https://doi.org/10.1177/0264619610387554
10 schema:datePublished 2013
11 schema:datePublishedReg 2013-01-01
12 schema:description Humans understand the world around us by visual and tactile exploration of the objects. The objective of this paper is to recognize the object-shapes from EEG signals while the subjects are exploring the same by visual and tactile means. The various object shapes are classified from electroencephalogram (EEG) signals that are stimulated by only tactile, only visual and by both means. EEG signals were acquired and analyzed from six electrodes, namely F3,F4,FC5,FC6,O1 and O2, where each pair of electrodes are located on frontal, somato-sensory and occipital region of the brain responsible for cognitive processing, tactile and visual perception. Mu-desynchronization in alpha and beta bands is used as the EEG modality for this purpose. Power spectral density (PSD) features are extracted and classified using support vector machine (SVM) classifiers in their corresponding object-shape classes. The results showed that object-shapes are best classified from EEG signals during only tactile exploration. The object shapes classified from EEG signals during only tactile exploration yielded highest mean classification accuracy of 88.34%. The average classification accuracy over all three object exploration modalities is 83.89%.
13 schema:editor Nd5c09ea225b94ac69d389aad23a621ad
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf Ndd0c29ffa4ae4c0796c701399aa48a34
18 schema:name Object Shape Recognition from EEG Signals during Tactile and Visual Exploration
19 schema:pagination 459-464
20 schema:productId N9403cca57ca4414692d177f2a720f75c
21 Na2dec8a5f3ef4feaa6d7363fe3182828
22 Nfd5ac97a35924fb1906817eb5c871efa
23 schema:publisher Nea93558a58454130854b58abbbb7896d
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045519289
25 https://doi.org/10.1007/978-3-642-45062-4_63
26 schema:sdDatePublished 2019-04-15T17:16
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N49a4e64838ab470686b4d9520e97c9e0
29 schema:url http://link.springer.com/10.1007/978-3-642-45062-4_63
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N0450c0acc3d14b138e3d8ab6d478fe02 rdf:first sg:person.07421667055.72
34 rdf:rest Nb529b8842a2345f2bb5d2ccd1c871e51
35 N0b7ba703ae2648d187c0ba4e2884d757 schema:familyName Pal
36 schema:givenName Sankar K.
37 rdf:type schema:Person
38 N154eb42d94e3447fa930013ccc1b068f schema:familyName Ghosh
39 schema:givenName Kuntal
40 rdf:type schema:Person
41 N3a68e52681154811b2c2c202c0c5be03 rdf:first Nc8653ac5fed64f7e9588974d2dfd1313
42 rdf:rest N61c890532fef421b86380ec53af0f632
43 N49a4e64838ab470686b4d9520e97c9e0 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N4a1a3203bc054df7b64e3378eb8cb2ec schema:name Department of Computer Science, TJS Engineering College, Chennai, India
46 rdf:type schema:Organization
47 N61c890532fef421b86380ec53af0f632 rdf:first N154eb42d94e3447fa930013ccc1b068f
48 rdf:rest Nc054a37b5024457ca72b9ed27c669cbe
49 N67c1e48719164824a1bec450f91cc0a5 rdf:first sg:person.010726132604.03
50 rdf:rest N0450c0acc3d14b138e3d8ab6d478fe02
51 N93a0161aeb89440882f88bd7c01aa652 rdf:first sg:person.01337053064.29
52 rdf:rest N67c1e48719164824a1bec450f91cc0a5
53 N9403cca57ca4414692d177f2a720f75c schema:name dimensions_id
54 schema:value pub.1045519289
55 rdf:type schema:PropertyValue
56 Na2dec8a5f3ef4feaa6d7363fe3182828 schema:name readcube_id
57 schema:value d8d3e4102d0ccf18ddf1c5ae5f2af4baa30016c15b489cfdc6abe20b6d11d435
58 rdf:type schema:PropertyValue
59 Na89726cc1fa44041a0177bbb10f7c0aa rdf:first Nb9bb2027c038489da61c9144c6a53c6c
60 rdf:rest N3a68e52681154811b2c2c202c0c5be03
61 Na8ae203f3a9f4180bfbd18141c9f259a rdf:first sg:person.01260452574.41
62 rdf:rest N93a0161aeb89440882f88bd7c01aa652
63 Nb529b8842a2345f2bb5d2ccd1c871e51 rdf:first sg:person.013316247664.76
64 rdf:rest rdf:nil
65 Nb9bb2027c038489da61c9144c6a53c6c schema:familyName Ghosh
66 schema:givenName Ashish
67 rdf:type schema:Person
68 Nc054a37b5024457ca72b9ed27c669cbe rdf:first N0b7ba703ae2648d187c0ba4e2884d757
69 rdf:rest rdf:nil
70 Nc8653ac5fed64f7e9588974d2dfd1313 schema:familyName Murty
71 schema:givenName M. Narasimha
72 rdf:type schema:Person
73 Nd5c09ea225b94ac69d389aad23a621ad rdf:first Nf64ddd73a1e04ff488a9efcc5b2f1bfd
74 rdf:rest Na89726cc1fa44041a0177bbb10f7c0aa
75 Ndd0c29ffa4ae4c0796c701399aa48a34 schema:isbn 978-3-642-45061-7
76 978-3-642-45062-4
77 schema:name Pattern Recognition and Machine Intelligence
78 rdf:type schema:Book
79 Nea93558a58454130854b58abbbb7896d schema:location Berlin, Heidelberg
80 schema:name Springer Berlin Heidelberg
81 rdf:type schema:Organisation
82 Nf64ddd73a1e04ff488a9efcc5b2f1bfd schema:familyName Maji
83 schema:givenName Pradipta
84 rdf:type schema:Person
85 Nfd5ac97a35924fb1906817eb5c871efa schema:name doi
86 schema:value 10.1007/978-3-642-45062-4_63
87 rdf:type schema:PropertyValue
88 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
89 schema:name Medical and Health Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
92 schema:name Neurosciences
93 rdf:type schema:DefinedTerm
94 sg:person.010726132604.03 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
95 schema:familyName Tibarewala
96 schema:givenName D. N.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726132604.03
98 rdf:type schema:Person
99 sg:person.01260452574.41 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
100 schema:familyName Khasnobish
101 schema:givenName Anwesha
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260452574.41
103 rdf:type schema:Person
104 sg:person.013316247664.76 schema:affiliation N4a1a3203bc054df7b64e3378eb8cb2ec
105 schema:familyName Janarthanan
106 schema:givenName R.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316247664.76
108 rdf:type schema:Person
109 sg:person.01337053064.29 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
110 schema:familyName Konar
111 schema:givenName Amit
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29
113 rdf:type schema:Person
114 sg:person.07421667055.72 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
115 schema:familyName Bhattacharyya
116 schema:givenName Saugat
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421667055.72
118 rdf:type schema:Person
119 https://doi.org/10.1002/dev.20056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045372148
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0926-6410(00)00061-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028414246
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/21.3469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061122005
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/tnsre.2008.926694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740361
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1145/2207676.2207746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046650630
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1177/0264619610387554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033064971
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
132 schema:name Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India
133 School of Bioscience and Engineering, Jadavpur University, Kolkata, India
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...