Designing Markets for Daily Deals View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2013

AUTHORS

Yang Cai , Mohammad Mahdian , Aranyak Mehta , Bo Waggoner

ABSTRACT

Daily deals platforms such as Amazon Local, Google Offers, GroupOn, and LivingSocial have provided a new channel for merchants to directly market to consumers. In order to maximize consumer acquisition and retention, these platforms would like to offer deals that give good value to users. Currently, selecting such deals is done manually; however, the large number of submarkets and localities necessitates an automatic approach to selecting good deals and determining merchant payments.We approach this challenge as a market design problem. We postulate that merchants already have a good idea of the attractiveness of their deal to consumers as well as the amount they are willing to pay to offer their deal. The goal is to design an auction that maximizes a combination of the revenue of the auctioneer (platform), welfare of the bidders (merchants), and the positive externality on a third party (the consumer), despite the asymmetry of information about this consumer benefit. We design auctions that truthfully elicit this information from the merchants and maximize the social welfare objective, and we characterize the consumer welfare functions for which this objective is truthfully implementable. We generalize this characterization to a very broad mechanism-design setting and give examples of other applications. More... »

PAGES

82-95

Book

TITLE

Web and Internet Economics

ISBN

978-3-642-45045-7
978-3-642-45046-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-45046-4_8

DOI

http://dx.doi.org/10.1007/978-3-642-45046-4_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004340456


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MIT, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "MIT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "Yang", 
        "id": "sg:person.016367025371.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016367025371.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Google, USA", 
          "id": "http://www.grid.ac/institutes/grid.420451.6", 
          "name": [
            "Google, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahdian", 
        "givenName": "Mohammad", 
        "id": "sg:person.013174553311.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174553311.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Google, USA", 
          "id": "http://www.grid.ac/institutes/grid.420451.6", 
          "name": [
            "Google, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mehta", 
        "givenName": "Aranyak", 
        "id": "sg:person.010106546671.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010106546671.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Harvard, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Waggoner", 
        "givenName": "Bo", 
        "id": "sg:person.016265421275.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016265421275.78"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Daily deals platforms such as Amazon Local, Google Offers, GroupOn, and LivingSocial have provided a new channel for merchants to directly market to consumers. In order to maximize consumer acquisition and retention, these platforms would like to offer deals that give good value to users. Currently, selecting such deals is done manually; however, the large number of submarkets and localities necessitates an automatic approach to selecting good deals and determining merchant payments.We approach this challenge as a market design problem. We postulate that merchants already have a good idea of the attractiveness of their deal to consumers as well as the amount they are willing to pay to offer their deal. The goal is to design an auction that maximizes a combination of the revenue of the auctioneer (platform), welfare of the bidders (merchants), and the positive externality on a third party (the consumer), despite the asymmetry of information about this consumer benefit. We design auctions that truthfully elicit this information from the merchants and maximize the social welfare objective, and we characterize the consumer welfare functions for which this objective is truthfully implementable. We generalize this characterization to a very broad mechanism-design setting and give examples of other applications.", 
    "editor": [
      {
        "familyName": "Chen", 
        "givenName": "Yiling", 
        "type": "Person"
      }, 
      {
        "familyName": "Immorlica", 
        "givenName": "Nicole", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-45046-4_8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-45045-7", 
        "978-3-642-45046-4"
      ], 
      "name": "Web and Internet Economics", 
      "type": "Book"
    }, 
    "keywords": [
      "market design problem", 
      "mechanism design setting", 
      "social welfare objective", 
      "daily deal platforms", 
      "asymmetry of information", 
      "welfare function", 
      "positive externalities", 
      "welfare objectives", 
      "Designing Markets", 
      "merchant payments", 
      "consumer benefits", 
      "such deals", 
      "consumer acquisition", 
      "daily deals", 
      "auctions", 
      "new channel", 
      "consumers", 
      "merchants", 
      "good deal", 
      "third party", 
      "submarkets", 
      "externalities", 
      "bidders", 
      "revenue", 
      "auctioneer", 
      "market", 
      "payments", 
      "welfare", 
      "best value", 
      "Groupon", 
      "LivingSocial", 
      "deal", 
      "good idea", 
      "offer", 
      "attractiveness", 
      "parties", 
      "asymmetry", 
      "benefits", 
      "objective", 
      "information", 
      "locals", 
      "design problem", 
      "goal", 
      "large number", 
      "approach", 
      "idea", 
      "acquisition", 
      "values", 
      "setting", 
      "problem", 
      "example", 
      "challenges", 
      "channels", 
      "order", 
      "users", 
      "number", 
      "amount", 
      "function", 
      "platform", 
      "localities", 
      "applications", 
      "combination", 
      "retention", 
      "automatic approach", 
      "characterization"
    ], 
    "name": "Designing Markets for Daily Deals", 
    "pagination": "82-95", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004340456"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-45046-4_8"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-45046-4_8", 
      "https://app.dimensions.ai/details/publication/pub.1004340456"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_380.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-45046-4_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-45046-4_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-45046-4_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-45046-4_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-45046-4_8'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      23 PREDICATES      91 URIs      84 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-45046-4_8 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N304e8bebe0184e27816507fe38532623
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description Daily deals platforms such as Amazon Local, Google Offers, GroupOn, and LivingSocial have provided a new channel for merchants to directly market to consumers. In order to maximize consumer acquisition and retention, these platforms would like to offer deals that give good value to users. Currently, selecting such deals is done manually; however, the large number of submarkets and localities necessitates an automatic approach to selecting good deals and determining merchant payments.We approach this challenge as a market design problem. We postulate that merchants already have a good idea of the attractiveness of their deal to consumers as well as the amount they are willing to pay to offer their deal. The goal is to design an auction that maximizes a combination of the revenue of the auctioneer (platform), welfare of the bidders (merchants), and the positive externality on a third party (the consumer), despite the asymmetry of information about this consumer benefit. We design auctions that truthfully elicit this information from the merchants and maximize the social welfare objective, and we characterize the consumer welfare functions for which this objective is truthfully implementable. We generalize this characterization to a very broad mechanism-design setting and give examples of other applications.
7 schema:editor Nbd6220504fa54ef19cca2ec414b2bf5e
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N61594bbfb70146fba25f4d7c44ad5478
12 schema:keywords Designing Markets
13 Groupon
14 LivingSocial
15 acquisition
16 amount
17 applications
18 approach
19 asymmetry
20 asymmetry of information
21 attractiveness
22 auctioneer
23 auctions
24 automatic approach
25 benefits
26 best value
27 bidders
28 challenges
29 channels
30 characterization
31 combination
32 consumer acquisition
33 consumer benefits
34 consumers
35 daily deal platforms
36 daily deals
37 deal
38 design problem
39 example
40 externalities
41 function
42 goal
43 good deal
44 good idea
45 idea
46 information
47 large number
48 localities
49 locals
50 market
51 market design problem
52 mechanism design setting
53 merchant payments
54 merchants
55 new channel
56 number
57 objective
58 offer
59 order
60 parties
61 payments
62 platform
63 positive externalities
64 problem
65 retention
66 revenue
67 setting
68 social welfare objective
69 submarkets
70 such deals
71 third party
72 users
73 values
74 welfare
75 welfare function
76 welfare objectives
77 schema:name Designing Markets for Daily Deals
78 schema:pagination 82-95
79 schema:productId N1805d95226e34b2e8ba439ff08ef673d
80 Nbfcf1315a8af49c1bf6b5198db4d600a
81 schema:publisher N3ef10d518c60406eb0724d6653dec559
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004340456
83 https://doi.org/10.1007/978-3-642-45046-4_8
84 schema:sdDatePublished 2022-05-10T10:50
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N7bae38eef36145ada6407d39841d8468
87 schema:url https://doi.org/10.1007/978-3-642-45046-4_8
88 sgo:license sg:explorer/license/
89 sgo:sdDataset chapters
90 rdf:type schema:Chapter
91 N0481d2861f1147f6bb3a2388c1fbb902 rdf:first sg:person.016265421275.78
92 rdf:rest rdf:nil
93 N1805d95226e34b2e8ba439ff08ef673d schema:name doi
94 schema:value 10.1007/978-3-642-45046-4_8
95 rdf:type schema:PropertyValue
96 N304e8bebe0184e27816507fe38532623 rdf:first sg:person.016367025371.75
97 rdf:rest N511dd77da6934a22b0d393a39b8f8d50
98 N3ef10d518c60406eb0724d6653dec559 schema:name Springer Nature
99 rdf:type schema:Organisation
100 N511dd77da6934a22b0d393a39b8f8d50 rdf:first sg:person.013174553311.33
101 rdf:rest N891d8cac5bd54fd8ab0e2c439edc3dbc
102 N61594bbfb70146fba25f4d7c44ad5478 schema:isbn 978-3-642-45045-7
103 978-3-642-45046-4
104 schema:name Web and Internet Economics
105 rdf:type schema:Book
106 N6ab8330aa3854b83b8e817711555bee7 schema:familyName Chen
107 schema:givenName Yiling
108 rdf:type schema:Person
109 N7bae38eef36145ada6407d39841d8468 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N862b92688eae4be2b8df48f7eec9295c schema:familyName Immorlica
112 schema:givenName Nicole
113 rdf:type schema:Person
114 N891d8cac5bd54fd8ab0e2c439edc3dbc rdf:first sg:person.010106546671.08
115 rdf:rest N0481d2861f1147f6bb3a2388c1fbb902
116 Nbd6220504fa54ef19cca2ec414b2bf5e rdf:first N6ab8330aa3854b83b8e817711555bee7
117 rdf:rest Ncdd8cf2fed6248de89c53354392ceff0
118 Nbfcf1315a8af49c1bf6b5198db4d600a schema:name dimensions_id
119 schema:value pub.1004340456
120 rdf:type schema:PropertyValue
121 Ncdd8cf2fed6248de89c53354392ceff0 rdf:first N862b92688eae4be2b8df48f7eec9295c
122 rdf:rest rdf:nil
123 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
124 schema:name Economics
125 rdf:type schema:DefinedTerm
126 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
127 schema:name Applied Economics
128 rdf:type schema:DefinedTerm
129 sg:person.010106546671.08 schema:affiliation grid-institutes:grid.420451.6
130 schema:familyName Mehta
131 schema:givenName Aranyak
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010106546671.08
133 rdf:type schema:Person
134 sg:person.013174553311.33 schema:affiliation grid-institutes:grid.420451.6
135 schema:familyName Mahdian
136 schema:givenName Mohammad
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174553311.33
138 rdf:type schema:Person
139 sg:person.016265421275.78 schema:affiliation grid-institutes:None
140 schema:familyName Waggoner
141 schema:givenName Bo
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016265421275.78
143 rdf:type schema:Person
144 sg:person.016367025371.75 schema:affiliation grid-institutes:grid.116068.8
145 schema:familyName Cai
146 schema:givenName Yang
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016367025371.75
148 rdf:type schema:Person
149 grid-institutes:None schema:alternateName Harvard, USA
150 schema:name Harvard, USA
151 rdf:type schema:Organization
152 grid-institutes:grid.116068.8 schema:alternateName MIT, USA
153 schema:name MIT, USA
154 rdf:type schema:Organization
155 grid-institutes:grid.420451.6 schema:alternateName Google, USA
156 schema:name Google, USA
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...