Agents in the Era of Big Data: What the “End of Theory” Might Mean for Agent Systems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Aditya Ghose

ABSTRACT

Our ability to collect, manage and analyze vast amounts of data has led some to predict the demise of theory. This has important implications for research in agent systems. It can mean that specifications of agent intent, or of agent behaviour, or the norms that constrain agent behaviour can be learnt from data and maintained in the face of continuous data streams. I will offer some examples of how the agents community is beginning to leverage data in this fashion, and what the challenges might be in the future. More... »

PAGES

1-4

Book

TITLE

PRIMA 2013: Principles and Practice of Multi-Agent Systems

ISBN

978-3-642-44926-0
978-3-642-44927-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-44927-7_1

DOI

http://dx.doi.org/10.1007/978-3-642-44927-7_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029299207


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Decision Systems Laboratory, School of Computer Science and Software Engineering, University of Wollongong, 2522, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1007.6", 
          "name": [
            "Decision Systems Laboratory, School of Computer Science and Software Engineering, University of Wollongong, 2522, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghose", 
        "givenName": "Aditya", 
        "id": "sg:person.015573517335.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015573517335.70"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Our ability to collect, manage and analyze vast amounts of data has led some to predict the demise of theory. This has important implications for research in agent systems. It can mean that specifications of agent intent, or of agent behaviour, or the norms that constrain agent behaviour can be learnt from data and maintained in the face of continuous data streams. I will offer some examples of how the agents community is beginning to leverage data in this fashion, and what the challenges might be in the future.", 
    "editor": [
      {
        "familyName": "Boella", 
        "givenName": "Guido", 
        "type": "Person"
      }, 
      {
        "familyName": "Elkind", 
        "givenName": "Edith", 
        "type": "Person"
      }, 
      {
        "familyName": "Savarimuthu", 
        "givenName": "Bastin Tony Roy", 
        "type": "Person"
      }, 
      {
        "familyName": "Dignum", 
        "givenName": "Frank", 
        "type": "Person"
      }, 
      {
        "familyName": "Purvis", 
        "givenName": "Martin K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-44927-7_1", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-44926-0", 
        "978-3-642-44927-7"
      ], 
      "name": "PRIMA 2013: Principles and Practice of Multi-Agent Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "agent system", 
      "agent behavior", 
      "continuous data streams", 
      "agent community", 
      "big data", 
      "data streams", 
      "agent's intent", 
      "vast amount", 
      "end of theory", 
      "specification", 
      "system", 
      "data", 
      "streams", 
      "challenges", 
      "example", 
      "era", 
      "intent", 
      "fashion", 
      "research", 
      "face", 
      "end", 
      "future", 
      "community", 
      "amount", 
      "behavior", 
      "theory", 
      "ability", 
      "agents", 
      "norms", 
      "implications", 
      "important implications", 
      "demise"
    ], 
    "name": "Agents in the Era of Big Data: What the \u201cEnd of Theory\u201d Might Mean for Agent Systems", 
    "pagination": "1-4", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029299207"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-44927-7_1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-44927-7_1", 
      "https://app.dimensions.ai/details/publication/pub.1029299207"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_426.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-44927-7_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-44927-7_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-44927-7_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-44927-7_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-44927-7_1'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      22 PREDICATES      57 URIs      50 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-44927-7_1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndbcb37974c89414b9752733e31c87cf4
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description Our ability to collect, manage and analyze vast amounts of data has led some to predict the demise of theory. This has important implications for research in agent systems. It can mean that specifications of agent intent, or of agent behaviour, or the norms that constrain agent behaviour can be learnt from data and maintained in the face of continuous data streams. I will offer some examples of how the agents community is beginning to leverage data in this fashion, and what the challenges might be in the future.
7 schema:editor Nd9ed4738e74143f283da398dd010baea
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nc40ff2b5d8a5481b953c8b39afc40755
11 schema:keywords ability
12 agent behavior
13 agent community
14 agent system
15 agent's intent
16 agents
17 amount
18 behavior
19 big data
20 challenges
21 community
22 continuous data streams
23 data
24 data streams
25 demise
26 end
27 end of theory
28 era
29 example
30 face
31 fashion
32 future
33 implications
34 important implications
35 intent
36 norms
37 research
38 specification
39 streams
40 system
41 theory
42 vast amount
43 schema:name Agents in the Era of Big Data: What the “End of Theory” Might Mean for Agent Systems
44 schema:pagination 1-4
45 schema:productId N07dd29ef33074130ba9a402976588949
46 N3e0f1048700147509b0c4885e3a02925
47 schema:publisher N43d16b74522a432c84cc5cab9901dc73
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029299207
49 https://doi.org/10.1007/978-3-642-44927-7_1
50 schema:sdDatePublished 2022-12-01T06:53
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nc3c9004d590b42f29648dcec57bde9e7
53 schema:url https://doi.org/10.1007/978-3-642-44927-7_1
54 sgo:license sg:explorer/license/
55 sgo:sdDataset chapters
56 rdf:type schema:Chapter
57 N07dd29ef33074130ba9a402976588949 schema:name doi
58 schema:value 10.1007/978-3-642-44927-7_1
59 rdf:type schema:PropertyValue
60 N2848cc48e9f54616a65bdfbbe48bac20 rdf:first Nb2b1440ce1ba490ab81fa0ed725dbbc1
61 rdf:rest N3f0a790168a34afdadb6c42439d4ee58
62 N3e0f1048700147509b0c4885e3a02925 schema:name dimensions_id
63 schema:value pub.1029299207
64 rdf:type schema:PropertyValue
65 N3f0a790168a34afdadb6c42439d4ee58 rdf:first N95d4ca15907f4ce8ba9399eab6f0893a
66 rdf:rest Nf630538700c1448f97ba5f81efde13a8
67 N43d16b74522a432c84cc5cab9901dc73 schema:name Springer Nature
68 rdf:type schema:Organisation
69 N484f5e57de9044deb958529d90bb6940 schema:familyName Elkind
70 schema:givenName Edith
71 rdf:type schema:Person
72 N57329324cbab404bb387a62cba1c9ad1 rdf:first N484f5e57de9044deb958529d90bb6940
73 rdf:rest N2848cc48e9f54616a65bdfbbe48bac20
74 N57e28fdf283440d28597c70cb93cf0fa schema:familyName Purvis
75 schema:givenName Martin K.
76 rdf:type schema:Person
77 N95d4ca15907f4ce8ba9399eab6f0893a schema:familyName Dignum
78 schema:givenName Frank
79 rdf:type schema:Person
80 Nb2b1440ce1ba490ab81fa0ed725dbbc1 schema:familyName Savarimuthu
81 schema:givenName Bastin Tony Roy
82 rdf:type schema:Person
83 Nc3c9004d590b42f29648dcec57bde9e7 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nc40ff2b5d8a5481b953c8b39afc40755 schema:isbn 978-3-642-44926-0
86 978-3-642-44927-7
87 schema:name PRIMA 2013: Principles and Practice of Multi-Agent Systems
88 rdf:type schema:Book
89 Nc6f196d34fff40b593c5a3f8390bdf53 schema:familyName Boella
90 schema:givenName Guido
91 rdf:type schema:Person
92 Nd9ed4738e74143f283da398dd010baea rdf:first Nc6f196d34fff40b593c5a3f8390bdf53
93 rdf:rest N57329324cbab404bb387a62cba1c9ad1
94 Ndbcb37974c89414b9752733e31c87cf4 rdf:first sg:person.015573517335.70
95 rdf:rest rdf:nil
96 Nf630538700c1448f97ba5f81efde13a8 rdf:first N57e28fdf283440d28597c70cb93cf0fa
97 rdf:rest rdf:nil
98 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
99 schema:name Information and Computing Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
102 schema:name Artificial Intelligence and Image Processing
103 rdf:type schema:DefinedTerm
104 sg:person.015573517335.70 schema:affiliation grid-institutes:grid.1007.6
105 schema:familyName Ghose
106 schema:givenName Aditya
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015573517335.70
108 rdf:type schema:Person
109 grid-institutes:grid.1007.6 schema:alternateName Decision Systems Laboratory, School of Computer Science and Software Engineering, University of Wollongong, 2522, NSW, Australia
110 schema:name Decision Systems Laboratory, School of Computer Science and Software Engineering, University of Wollongong, 2522, NSW, Australia
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...