RBF-Based Neuro-Adaptive Controller for a Knee Joint Rehabilitation Orthosis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Said Talbi , Boubaker Daachi , Karim Djouani

ABSTRACT

In this paper, we address a knee joint orthosis control for rehabilitation purposes. Only the structure of the system’s dynamic model is supposed to be known. Inertia of the knee-shank-orthosis system is identified on-line using an adaptive term. In order to approximate all of the other dynamics (viscous and solid frictions, gravity related torque, etc.), we use an RBF Neural Network (RBFNN) with no off-line prior training. Adaptation laws of the neural parameters and the inertia adaptive term are derived from the closed loop system’s overall stability study using Lyapunov’s theory. The study considers three cases: wearer being completely inactive or applying either a resistive or an assistive torque. Simulation results and conducted analysis show the effectiveness of the proposed approach. More... »

PAGES

257-266

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-42054-2_33

DOI

http://dx.doi.org/10.1007/978-3-642-42054-2_33

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002211052


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire Images, Signaux et Syst\u00e8mes Intelligents (LISSI, E. A.3956), University of Paris-Est Cr\u00e9teil, 61 avenue du G\u00e9n\u00e9ral de Gaulle, 94010, Cr\u00e9teil, France", 
          "id": "http://www.grid.ac/institutes/grid.466400.0", 
          "name": [
            "Laboratoire Images, Signaux et Syst\u00e8mes Intelligents (LISSI, E. A.3956), University of Paris-Est Cr\u00e9teil, 61 avenue du G\u00e9n\u00e9ral de Gaulle, 94010, Cr\u00e9teil, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Talbi", 
        "givenName": "Said", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire Images, Signaux et Syst\u00e8mes Intelligents (LISSI, E. A.3956), University of Paris-Est Cr\u00e9teil, 61 avenue du G\u00e9n\u00e9ral de Gaulle, 94010, Cr\u00e9teil, France", 
          "id": "http://www.grid.ac/institutes/grid.466400.0", 
          "name": [
            "Laboratoire Images, Signaux et Syst\u00e8mes Intelligents (LISSI, E. A.3956), University of Paris-Est Cr\u00e9teil, 61 avenue du G\u00e9n\u00e9ral de Gaulle, 94010, Cr\u00e9teil, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daachi", 
        "givenName": "Boubaker", 
        "id": "sg:person.015624112136.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015624112136.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire Images, Signaux et Syst\u00e8mes Intelligents (LISSI, E. A.3956), University of Paris-Est Cr\u00e9teil, 61 avenue du G\u00e9n\u00e9ral de Gaulle, 94010, Cr\u00e9teil, France", 
          "id": "http://www.grid.ac/institutes/grid.466400.0", 
          "name": [
            "Laboratoire Images, Signaux et Syst\u00e8mes Intelligents (LISSI, E. A.3956), University of Paris-Est Cr\u00e9teil, 61 avenue du G\u00e9n\u00e9ral de Gaulle, 94010, Cr\u00e9teil, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Djouani", 
        "givenName": "Karim", 
        "id": "sg:person.0610460003.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610460003.87"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "In this paper, we address a knee joint orthosis control for rehabilitation purposes. Only the structure of the system\u2019s dynamic model is supposed to be known. Inertia of the knee-shank-orthosis system is identified on-line using an adaptive term. In order to approximate all of the other dynamics (viscous and solid frictions, gravity related torque, etc.), we use an RBF Neural Network (RBFNN) with no off-line prior training. Adaptation laws of the neural parameters and the inertia adaptive term are derived from the closed loop system\u2019s overall stability study using Lyapunov\u2019s theory. The study considers three cases: wearer being completely inactive or applying either a resistive or an assistive torque. Simulation results and conducted analysis show the effectiveness of the proposed approach.", 
    "editor": [
      {
        "familyName": "Lee", 
        "givenName": "Minho", 
        "type": "Person"
      }, 
      {
        "familyName": "Hirose", 
        "givenName": "Akira", 
        "type": "Person"
      }, 
      {
        "familyName": "Hou", 
        "givenName": "Zeng-Guang", 
        "type": "Person"
      }, 
      {
        "familyName": "Kil", 
        "givenName": "Rhee Man", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-42054-2_33", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-42053-5", 
        "978-3-642-42054-2"
      ], 
      "name": "Neural Information Processing", 
      "type": "Book"
    }, 
    "keywords": [
      "dynamic model", 
      "adaptive term", 
      "assistive torque", 
      "RBF neural network", 
      "orthosis system", 
      "closed loop system", 
      "orthosis control", 
      "neuro-adaptive controller", 
      "loop system", 
      "simulation results", 
      "Lyapunov theory", 
      "system dynamics model", 
      "adaptation law", 
      "rehabilitation purposes", 
      "stability studies", 
      "torque", 
      "resistive", 
      "controller", 
      "inertia", 
      "neural network", 
      "system", 
      "parameters", 
      "structure", 
      "terms", 
      "order", 
      "model", 
      "law", 
      "orthosis", 
      "dynamics", 
      "theory", 
      "results", 
      "effectiveness", 
      "network", 
      "approach", 
      "control", 
      "RBF", 
      "analysis", 
      "wearers", 
      "study", 
      "purpose", 
      "cases", 
      "lines", 
      "neural parameters", 
      "prior training", 
      "training", 
      "paper", 
      "knee joint orthosis control", 
      "joint orthosis control", 
      "line prior training", 
      "inertia adaptive term", 
      "overall stability study", 
      "Knee Joint Rehabilitation Orthosis", 
      "Joint Rehabilitation Orthosis", 
      "Rehabilitation Orthosis"
    ], 
    "name": "RBF-Based Neuro-Adaptive Controller for a Knee Joint Rehabilitation Orthosis", 
    "pagination": "257-266", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002211052"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-42054-2_33"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-42054-2_33", 
      "https://app.dimensions.ai/details/publication/pub.1002211052"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_408.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-42054-2_33"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-42054-2_33'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-42054-2_33'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-42054-2_33'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-42054-2_33'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      23 PREDICATES      80 URIs      73 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-42054-2_33 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N66aebe95a9414d879e57539b0986f950
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description In this paper, we address a knee joint orthosis control for rehabilitation purposes. Only the structure of the system’s dynamic model is supposed to be known. Inertia of the knee-shank-orthosis system is identified on-line using an adaptive term. In order to approximate all of the other dynamics (viscous and solid frictions, gravity related torque, etc.), we use an RBF Neural Network (RBFNN) with no off-line prior training. Adaptation laws of the neural parameters and the inertia adaptive term are derived from the closed loop system’s overall stability study using Lyapunov’s theory. The study considers three cases: wearer being completely inactive or applying either a resistive or an assistive torque. Simulation results and conducted analysis show the effectiveness of the proposed approach.
7 schema:editor N2d5d5aa4027b44f9be0614dafb3bf0dd
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N68bfb8e3aa464b3cb49fb381423cc970
12 schema:keywords Joint Rehabilitation Orthosis
13 Knee Joint Rehabilitation Orthosis
14 Lyapunov theory
15 RBF
16 RBF neural network
17 Rehabilitation Orthosis
18 adaptation law
19 adaptive term
20 analysis
21 approach
22 assistive torque
23 cases
24 closed loop system
25 control
26 controller
27 dynamic model
28 dynamics
29 effectiveness
30 inertia
31 inertia adaptive term
32 joint orthosis control
33 knee joint orthosis control
34 law
35 line prior training
36 lines
37 loop system
38 model
39 network
40 neural network
41 neural parameters
42 neuro-adaptive controller
43 order
44 orthosis
45 orthosis control
46 orthosis system
47 overall stability study
48 paper
49 parameters
50 prior training
51 purpose
52 rehabilitation purposes
53 resistive
54 results
55 simulation results
56 stability studies
57 structure
58 study
59 system
60 system dynamics model
61 terms
62 theory
63 torque
64 training
65 wearers
66 schema:name RBF-Based Neuro-Adaptive Controller for a Knee Joint Rehabilitation Orthosis
67 schema:pagination 257-266
68 schema:productId Nd8cf700866f34d9187720595ae01de8f
69 Ne231cb21232b4091b0feb4da8e2b8778
70 schema:publisher N2e85fb933d894558a2503a8d0b90fb83
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002211052
72 https://doi.org/10.1007/978-3-642-42054-2_33
73 schema:sdDatePublished 2021-12-01T20:09
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N7b639eba88544c3281fb211a811d2d4c
76 schema:url https://doi.org/10.1007/978-3-642-42054-2_33
77 sgo:license sg:explorer/license/
78 sgo:sdDataset chapters
79 rdf:type schema:Chapter
80 N124556449e5046cc948ee94a352df7f0 schema:affiliation grid-institutes:grid.466400.0
81 schema:familyName Talbi
82 schema:givenName Said
83 rdf:type schema:Person
84 N2d5d5aa4027b44f9be0614dafb3bf0dd rdf:first Nc7d01e07603e4809a85808f63a227a8f
85 rdf:rest N5fe6fd12b6ca4e85814c529562b2a5ee
86 N2e85fb933d894558a2503a8d0b90fb83 schema:name Springer Nature
87 rdf:type schema:Organisation
88 N567c8a8809024e149d3232d93ddb28c9 rdf:first Ne77dfc1e074d431cab679729e99361c2
89 rdf:rest Nef2480622c7740b0b8b0cfa698ff9aba
90 N5bc10d5d28994f95a8e8840f242ba962 schema:familyName Hirose
91 schema:givenName Akira
92 rdf:type schema:Person
93 N5fe6fd12b6ca4e85814c529562b2a5ee rdf:first N5bc10d5d28994f95a8e8840f242ba962
94 rdf:rest N567c8a8809024e149d3232d93ddb28c9
95 N66aebe95a9414d879e57539b0986f950 rdf:first N124556449e5046cc948ee94a352df7f0
96 rdf:rest N9ab82c2d945243a7b88f74b34a030edb
97 N68bfb8e3aa464b3cb49fb381423cc970 schema:isbn 978-3-642-42053-5
98 978-3-642-42054-2
99 schema:name Neural Information Processing
100 rdf:type schema:Book
101 N746f1c555020464181fab57a874e61a1 rdf:first sg:person.0610460003.87
102 rdf:rest rdf:nil
103 N7b639eba88544c3281fb211a811d2d4c schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N9ab82c2d945243a7b88f74b34a030edb rdf:first sg:person.015624112136.83
106 rdf:rest N746f1c555020464181fab57a874e61a1
107 Nc7d01e07603e4809a85808f63a227a8f schema:familyName Lee
108 schema:givenName Minho
109 rdf:type schema:Person
110 Nd8cf700866f34d9187720595ae01de8f schema:name dimensions_id
111 schema:value pub.1002211052
112 rdf:type schema:PropertyValue
113 Ne231cb21232b4091b0feb4da8e2b8778 schema:name doi
114 schema:value 10.1007/978-3-642-42054-2_33
115 rdf:type schema:PropertyValue
116 Ne42cf0c9d53044549bde9378d39f335a schema:familyName Kil
117 schema:givenName Rhee Man
118 rdf:type schema:Person
119 Ne77dfc1e074d431cab679729e99361c2 schema:familyName Hou
120 schema:givenName Zeng-Guang
121 rdf:type schema:Person
122 Nef2480622c7740b0b8b0cfa698ff9aba rdf:first Ne42cf0c9d53044549bde9378d39f335a
123 rdf:rest rdf:nil
124 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
125 schema:name Information and Computing Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
128 schema:name Artificial Intelligence and Image Processing
129 rdf:type schema:DefinedTerm
130 sg:person.015624112136.83 schema:affiliation grid-institutes:grid.466400.0
131 schema:familyName Daachi
132 schema:givenName Boubaker
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015624112136.83
134 rdf:type schema:Person
135 sg:person.0610460003.87 schema:affiliation grid-institutes:grid.466400.0
136 schema:familyName Djouani
137 schema:givenName Karim
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610460003.87
139 rdf:type schema:Person
140 grid-institutes:grid.466400.0 schema:alternateName Laboratoire Images, Signaux et Systèmes Intelligents (LISSI, E. A.3956), University of Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010, Créteil, France
141 schema:name Laboratoire Images, Signaux et Systèmes Intelligents (LISSI, E. A.3956), University of Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010, Créteil, France
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...