Image Denoising Based on Overcomplete Topographic Sparse Coding View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Haohua Zhao , Jun Luo , Zhiheng Huang , Takefumi Nagumo , Jun Murayama , Liqing Zhang

ABSTRACT

This paper presents a novel image denoising framework using overcomplete topographic model. To adapt to the statistics of natural images, we impose sparseness constraints on the denoising model. Based on the overcomplete topographic model, our denoising system improves over previous work on the following aspects: multi-category based sparse coding, adaptive learning, local normalization, and shrinkage function. A large number of simulations have been performed to show the performance of the modified model, demonstrating that the proposed model achieves better denoising performance. More... »

PAGES

266-273

References to SciGraph publications

  • 2011. Sparse Coding Image Denoising Based on Saliency Map Weight in NEURAL INFORMATION PROCESSING
  • Book

    TITLE

    Neural Information Processing

    ISBN

    978-3-642-42050-4
    978-3-642-42051-1

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-42051-1_34

    DOI

    http://dx.doi.org/10.1007/978-3-642-42051-1_34

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014794278


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Shanghai Jiao Tong University", 
              "id": "https://www.grid.ac/institutes/grid.16821.3c", 
              "name": [
                "MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems, Dep. of Computer Science & Engineering, Shanghai Jiao Tong Univ., Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Haohua", 
            "id": "sg:person.07757402535.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07757402535.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sony (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.410792.9", 
              "name": [
                "SONY Corporation, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Luo", 
            "givenName": "Jun", 
            "id": "sg:person.011352343535.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011352343535.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shanghai Jiao Tong University", 
              "id": "https://www.grid.ac/institutes/grid.16821.3c", 
              "name": [
                "MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems, Dep. of Computer Science & Engineering, Shanghai Jiao Tong Univ., Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Zhiheng", 
            "id": "sg:person.012745304535.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012745304535.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sony (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.410792.9", 
              "name": [
                "SONY Corporation, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nagumo", 
            "givenName": "Takefumi", 
            "id": "sg:person.014340245535.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014340245535.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sony (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.410792.9", 
              "name": [
                "SONY Corporation, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Murayama", 
            "givenName": "Jun", 
            "id": "sg:person.015733206535.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015733206535.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shanghai Jiao Tong University", 
              "id": "https://www.grid.ac/institutes/grid.16821.3c", 
              "name": [
                "MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems, Dep. of Computer Science & Engineering, Shanghai Jiao Tong Univ., Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Liqing", 
            "id": "sg:person.01257443723.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257443723.62"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.neucom.2007.06.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004804730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-24958-7_36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023862676", 
              "https://doi.org/10.1007/978-3-642-24958-7_36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2006.881969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061641581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsp.2006.881199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061800223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2011.5995478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093295129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2009.5459452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095173442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/acssc.1993.342465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095254645"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013", 
        "datePublishedReg": "2013-01-01", 
        "description": "This paper presents a novel image denoising framework using overcomplete topographic model. To adapt to the statistics of natural images, we impose sparseness constraints on the denoising model. Based on the overcomplete topographic model, our denoising system improves over previous work on the following aspects: multi-category based sparse coding, adaptive learning, local normalization, and shrinkage function. A large number of simulations have been performed to show the performance of the modified model, demonstrating that the proposed model achieves better denoising performance.", 
        "editor": [
          {
            "familyName": "Lee", 
            "givenName": "Minho", 
            "type": "Person"
          }, 
          {
            "familyName": "Hirose", 
            "givenName": "Akira", 
            "type": "Person"
          }, 
          {
            "familyName": "Hou", 
            "givenName": "Zeng-Guang", 
            "type": "Person"
          }, 
          {
            "familyName": "Kil", 
            "givenName": "Rhee Man", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-42051-1_34", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-42050-4", 
            "978-3-642-42051-1"
          ], 
          "name": "Neural Information Processing", 
          "type": "Book"
        }, 
        "name": "Image Denoising Based on Overcomplete Topographic Sparse Coding", 
        "pagination": "266-273", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-42051-1_34"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "467bc8c303b6c8e5e1f58ec3ea4d392e59165a7347d5b98192eecaa94dc94ec2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014794278"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-42051-1_34", 
          "https://app.dimensions.ai/details/publication/pub.1014794278"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T15:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000252.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-42051-1_34"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-42051-1_34'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-42051-1_34'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-42051-1_34'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-42051-1_34'


     

    This table displays all metadata directly associated to this object as RDF triples.

    140 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-42051-1_34 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N491f09ce1bda406a8dd019cdc85af598
    4 schema:citation sg:pub.10.1007/978-3-642-24958-7_36
    5 https://doi.org/10.1016/j.neucom.2007.06.013
    6 https://doi.org/10.1109/acssc.1993.342465
    7 https://doi.org/10.1109/cvpr.2011.5995478
    8 https://doi.org/10.1109/iccv.2009.5459452
    9 https://doi.org/10.1109/tip.2006.881969
    10 https://doi.org/10.1109/tsp.2006.881199
    11 schema:datePublished 2013
    12 schema:datePublishedReg 2013-01-01
    13 schema:description This paper presents a novel image denoising framework using overcomplete topographic model. To adapt to the statistics of natural images, we impose sparseness constraints on the denoising model. Based on the overcomplete topographic model, our denoising system improves over previous work on the following aspects: multi-category based sparse coding, adaptive learning, local normalization, and shrinkage function. A large number of simulations have been performed to show the performance of the modified model, demonstrating that the proposed model achieves better denoising performance.
    14 schema:editor N280239e108dd43508734d15d9d33b27c
    15 schema:genre chapter
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N8f4fd078e88345ff89028fba048e4c61
    19 schema:name Image Denoising Based on Overcomplete Topographic Sparse Coding
    20 schema:pagination 266-273
    21 schema:productId N78fcf1ba59014ef3a0a76759c9557ff2
    22 Nd2a186a2e959451999d766e08f5f8db3
    23 Nf765b867879c448d9cd1c407f3c4fa38
    24 schema:publisher N45c904db1c9f41259a9de228c216ebfc
    25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014794278
    26 https://doi.org/10.1007/978-3-642-42051-1_34
    27 schema:sdDatePublished 2019-04-15T15:19
    28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    29 schema:sdPublisher Nbbb3b87cbaec44b49c1d134c63cfa006
    30 schema:url http://link.springer.com/10.1007/978-3-642-42051-1_34
    31 sgo:license sg:explorer/license/
    32 sgo:sdDataset chapters
    33 rdf:type schema:Chapter
    34 N034f53977be64a7291e8b22218bfbc16 rdf:first sg:person.012745304535.78
    35 rdf:rest Nb3b90e9807964ccc9f893d8970424fc1
    36 N280239e108dd43508734d15d9d33b27c rdf:first N77159ff6507a4cdc8534fb8d0bb3b8d1
    37 rdf:rest N9b06222baad3499381926d3d8fba47c8
    38 N34bf8512d59846a8bb41af2f5f21a619 rdf:first sg:person.015733206535.42
    39 rdf:rest N5a50820c7a6445a79c7e02913e9807a8
    40 N45c904db1c9f41259a9de228c216ebfc schema:location Berlin, Heidelberg
    41 schema:name Springer Berlin Heidelberg
    42 rdf:type schema:Organisation
    43 N491f09ce1bda406a8dd019cdc85af598 rdf:first sg:person.07757402535.42
    44 rdf:rest N4c7eed7721174ed1854211f66236d104
    45 N4c7eed7721174ed1854211f66236d104 rdf:first sg:person.011352343535.08
    46 rdf:rest N034f53977be64a7291e8b22218bfbc16
    47 N5a50820c7a6445a79c7e02913e9807a8 rdf:first sg:person.01257443723.62
    48 rdf:rest rdf:nil
    49 N77159ff6507a4cdc8534fb8d0bb3b8d1 schema:familyName Lee
    50 schema:givenName Minho
    51 rdf:type schema:Person
    52 N78fcf1ba59014ef3a0a76759c9557ff2 schema:name doi
    53 schema:value 10.1007/978-3-642-42051-1_34
    54 rdf:type schema:PropertyValue
    55 N8f4fd078e88345ff89028fba048e4c61 schema:isbn 978-3-642-42050-4
    56 978-3-642-42051-1
    57 schema:name Neural Information Processing
    58 rdf:type schema:Book
    59 N9b06222baad3499381926d3d8fba47c8 rdf:first Ncf4e3969d7ef471ebed35676009811a3
    60 rdf:rest Na12af374037e4e9687b38e682aaa0122
    61 N9d934c25bb5f48c4b78412d9b6feaabf schema:familyName Kil
    62 schema:givenName Rhee Man
    63 rdf:type schema:Person
    64 Na12af374037e4e9687b38e682aaa0122 rdf:first Nc84d2c72bee3410f98f0f46c0886c38b
    65 rdf:rest Nd95b3b44ce3f4bd2b36771b781b88c78
    66 Nb3b90e9807964ccc9f893d8970424fc1 rdf:first sg:person.014340245535.93
    67 rdf:rest N34bf8512d59846a8bb41af2f5f21a619
    68 Nbbb3b87cbaec44b49c1d134c63cfa006 schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 Nc84d2c72bee3410f98f0f46c0886c38b schema:familyName Hou
    71 schema:givenName Zeng-Guang
    72 rdf:type schema:Person
    73 Ncf4e3969d7ef471ebed35676009811a3 schema:familyName Hirose
    74 schema:givenName Akira
    75 rdf:type schema:Person
    76 Nd2a186a2e959451999d766e08f5f8db3 schema:name dimensions_id
    77 schema:value pub.1014794278
    78 rdf:type schema:PropertyValue
    79 Nd95b3b44ce3f4bd2b36771b781b88c78 rdf:first N9d934c25bb5f48c4b78412d9b6feaabf
    80 rdf:rest rdf:nil
    81 Nf765b867879c448d9cd1c407f3c4fa38 schema:name readcube_id
    82 schema:value 467bc8c303b6c8e5e1f58ec3ea4d392e59165a7347d5b98192eecaa94dc94ec2
    83 rdf:type schema:PropertyValue
    84 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Information and Computing Sciences
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Artificial Intelligence and Image Processing
    89 rdf:type schema:DefinedTerm
    90 sg:person.011352343535.08 schema:affiliation https://www.grid.ac/institutes/grid.410792.9
    91 schema:familyName Luo
    92 schema:givenName Jun
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011352343535.08
    94 rdf:type schema:Person
    95 sg:person.01257443723.62 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
    96 schema:familyName Zhang
    97 schema:givenName Liqing
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257443723.62
    99 rdf:type schema:Person
    100 sg:person.012745304535.78 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
    101 schema:familyName Huang
    102 schema:givenName Zhiheng
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012745304535.78
    104 rdf:type schema:Person
    105 sg:person.014340245535.93 schema:affiliation https://www.grid.ac/institutes/grid.410792.9
    106 schema:familyName Nagumo
    107 schema:givenName Takefumi
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014340245535.93
    109 rdf:type schema:Person
    110 sg:person.015733206535.42 schema:affiliation https://www.grid.ac/institutes/grid.410792.9
    111 schema:familyName Murayama
    112 schema:givenName Jun
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015733206535.42
    114 rdf:type schema:Person
    115 sg:person.07757402535.42 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
    116 schema:familyName Zhao
    117 schema:givenName Haohua
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07757402535.42
    119 rdf:type schema:Person
    120 sg:pub.10.1007/978-3-642-24958-7_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023862676
    121 https://doi.org/10.1007/978-3-642-24958-7_36
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/j.neucom.2007.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004804730
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1109/acssc.1993.342465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095254645
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1109/cvpr.2011.5995478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093295129
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1109/iccv.2009.5459452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095173442
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1109/tip.2006.881969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641581
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1109/tsp.2006.881199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061800223
    134 rdf:type schema:CreativeWork
    135 https://www.grid.ac/institutes/grid.16821.3c schema:alternateName Shanghai Jiao Tong University
    136 schema:name MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems, Dep. of Computer Science & Engineering, Shanghai Jiao Tong Univ., Shanghai, China
    137 rdf:type schema:Organization
    138 https://www.grid.ac/institutes/grid.410792.9 schema:alternateName Sony (Japan)
    139 schema:name SONY Corporation, Tokyo, Japan
    140 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...