Music Genre Recognition Using Gabor Filters and LPQ Texture Descriptors View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2013

AUTHORS

Yandre Costa , Luiz Oliveira , Alessandro Koerich , Fabien Gouyon

ABSTRACT

This paper presents a novel approach for automatic music genre recognition in the visual domain that uses two texture descriptors. For this, the audio signal is converted into spectrograms and then textural features are extracted from this visual representation. Gabor filters and LPQ texture descriptors were used to capture the spectrogram content. In order to evaluate the performance of local feature extraction, some different zoning mechanisms were taken into account. The experiments were performed on the Latin Music Database. At the end, we have shown that the SVM classifier trained with LPQ is able to achieve a recognition rate above 80%. This rate is among the best results ever presented in the literature. More... »

PAGES

67-74

References to SciGraph publications

Book

TITLE

Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications

ISBN

978-3-642-41826-6
978-3-642-41827-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-41827-3_9

DOI

http://dx.doi.org/10.1007/978-3-642-41827-3_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017719759


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State University of Maringa", 
          "id": "https://www.grid.ac/institutes/grid.271762.7", 
          "name": [
            "State University of Maring\u00e1 (UEM), Maring\u00e1, PR, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Costa", 
        "givenName": "Yandre", 
        "id": "sg:person.013010125227.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013010125227.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.20736.30", 
          "name": [
            "Federal University of Paran\u00e1 (UFPR), Curitiba, PR, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oliveira", 
        "givenName": "Luiz", 
        "id": "sg:person.015252575101.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015252575101.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.20736.30", 
          "name": [
            "Federal University of Paran\u00e1 (UFPR), Curitiba, PR, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koerich", 
        "givenName": "Alessandro", 
        "id": "sg:person.014610011263.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014610011263.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Systems and Computer Engineering of Porto", 
          "id": "https://www.grid.ac/institutes/grid.20384.3d", 
          "name": [
            "Institute for Systems and Computer Engineering of Porto (INESC), Porto, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gouyon", 
        "givenName": "Fabien", 
        "id": "sg:person.0765006334.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765006334.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-69905-7_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009665193", 
          "https://doi.org/10.1007/978-3-540-69905-7_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-69905-7_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009665193", 
          "https://doi.org/10.1007/978-3-540-69905-7_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2012.04.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017171005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.667881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsa.2002.800560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061786085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2010.1128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093244141"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "This paper presents a novel approach for automatic music genre recognition in the visual domain that uses two texture descriptors. For this, the audio signal is converted into spectrograms and then textural features are extracted from this visual representation. Gabor filters and LPQ texture descriptors were used to capture the spectrogram content. In order to evaluate the performance of local feature extraction, some different zoning mechanisms were taken into account. The experiments were performed on the Latin Music Database. At the end, we have shown that the SVM classifier trained with LPQ is able to achieve a recognition rate above 80%. This rate is among the best results ever presented in the literature.", 
    "editor": [
      {
        "familyName": "Ruiz-Shulcloper", 
        "givenName": "Jos\u00e9", 
        "type": "Person"
      }, 
      {
        "familyName": "Sanniti di Baja", 
        "givenName": "Gabriella", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-41827-3_9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-41826-6", 
        "978-3-642-41827-3"
      ], 
      "name": "Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications", 
      "type": "Book"
    }, 
    "name": "Music Genre Recognition Using Gabor Filters and LPQ Texture Descriptors", 
    "pagination": "67-74", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-41827-3_9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "546d8cdffe1a9e5d1ddda4e25b3c69fa5bdb042e27efe9e43b379e1861cbf748"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017719759"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-41827-3_9", 
      "https://app.dimensions.ai/details/publication/pub.1017719759"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000254.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-41827-3_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41827-3_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41827-3_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41827-3_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41827-3_9'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-41827-3_9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6a7f9800002a4c3083e36ba39e0c4fe2
4 schema:citation sg:pub.10.1007/978-1-4757-2440-0
5 sg:pub.10.1007/978-3-540-69905-7_27
6 https://doi.org/10.1016/j.sigpro.2012.04.023
7 https://doi.org/10.1109/34.667881
8 https://doi.org/10.1109/icpr.2010.1128
9 https://doi.org/10.1109/tsa.2002.800560
10 schema:datePublished 2013
11 schema:datePublishedReg 2013-01-01
12 schema:description This paper presents a novel approach for automatic music genre recognition in the visual domain that uses two texture descriptors. For this, the audio signal is converted into spectrograms and then textural features are extracted from this visual representation. Gabor filters and LPQ texture descriptors were used to capture the spectrogram content. In order to evaluate the performance of local feature extraction, some different zoning mechanisms were taken into account. The experiments were performed on the Latin Music Database. At the end, we have shown that the SVM classifier trained with LPQ is able to achieve a recognition rate above 80%. This rate is among the best results ever presented in the literature.
13 schema:editor N26b6ae980ac44dcc997a067e8ad70fb5
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf Nb4165d1adb6e42ca82bd61a359e081fb
18 schema:name Music Genre Recognition Using Gabor Filters and LPQ Texture Descriptors
19 schema:pagination 67-74
20 schema:productId N7cf6e2b6f6e348aab8f7478354a4e448
21 Ne24ff2ec890f43e0aea17478a4a145f6
22 Nf0a57f829de54c1b94cd096a0d4bc527
23 schema:publisher N0b2fafa869aa4a74a79c35668ef543fb
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017719759
25 https://doi.org/10.1007/978-3-642-41827-3_9
26 schema:sdDatePublished 2019-04-15T13:27
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N8046b039046948f0900c4412c2827d7d
29 schema:url http://link.springer.com/10.1007/978-3-642-41827-3_9
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N09d5ab40d2ba426784234f6dd601e25f schema:familyName Ruiz-Shulcloper
34 schema:givenName José
35 rdf:type schema:Person
36 N0b2fafa869aa4a74a79c35668ef543fb schema:location Berlin, Heidelberg
37 schema:name Springer Berlin Heidelberg
38 rdf:type schema:Organisation
39 N26b6ae980ac44dcc997a067e8ad70fb5 rdf:first N09d5ab40d2ba426784234f6dd601e25f
40 rdf:rest Nb393596f368447bebea1dee612136423
41 N621cdbfd666341bbbfba54bf78e435d7 rdf:first sg:person.0765006334.23
42 rdf:rest rdf:nil
43 N6a7f9800002a4c3083e36ba39e0c4fe2 rdf:first sg:person.013010125227.30
44 rdf:rest Nc5117f4faeb348b3a6380c7ffc37cee8
45 N758f577078ad466f839434b3f8ad0249 rdf:first sg:person.014610011263.26
46 rdf:rest N621cdbfd666341bbbfba54bf78e435d7
47 N7cf6e2b6f6e348aab8f7478354a4e448 schema:name readcube_id
48 schema:value 546d8cdffe1a9e5d1ddda4e25b3c69fa5bdb042e27efe9e43b379e1861cbf748
49 rdf:type schema:PropertyValue
50 N8046b039046948f0900c4412c2827d7d schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Na69e8fa0384049c88970f4e19986b36e schema:familyName Sanniti di Baja
53 schema:givenName Gabriella
54 rdf:type schema:Person
55 Nb393596f368447bebea1dee612136423 rdf:first Na69e8fa0384049c88970f4e19986b36e
56 rdf:rest rdf:nil
57 Nb4165d1adb6e42ca82bd61a359e081fb schema:isbn 978-3-642-41826-6
58 978-3-642-41827-3
59 schema:name Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
60 rdf:type schema:Book
61 Nc5117f4faeb348b3a6380c7ffc37cee8 rdf:first sg:person.015252575101.27
62 rdf:rest N758f577078ad466f839434b3f8ad0249
63 Ne24ff2ec890f43e0aea17478a4a145f6 schema:name dimensions_id
64 schema:value pub.1017719759
65 rdf:type schema:PropertyValue
66 Nf0a57f829de54c1b94cd096a0d4bc527 schema:name doi
67 schema:value 10.1007/978-3-642-41827-3_9
68 rdf:type schema:PropertyValue
69 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
70 schema:name Information and Computing Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
73 schema:name Artificial Intelligence and Image Processing
74 rdf:type schema:DefinedTerm
75 sg:person.013010125227.30 schema:affiliation https://www.grid.ac/institutes/grid.271762.7
76 schema:familyName Costa
77 schema:givenName Yandre
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013010125227.30
79 rdf:type schema:Person
80 sg:person.014610011263.26 schema:affiliation https://www.grid.ac/institutes/grid.20736.30
81 schema:familyName Koerich
82 schema:givenName Alessandro
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014610011263.26
84 rdf:type schema:Person
85 sg:person.015252575101.27 schema:affiliation https://www.grid.ac/institutes/grid.20736.30
86 schema:familyName Oliveira
87 schema:givenName Luiz
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015252575101.27
89 rdf:type schema:Person
90 sg:person.0765006334.23 schema:affiliation https://www.grid.ac/institutes/grid.20384.3d
91 schema:familyName Gouyon
92 schema:givenName Fabien
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765006334.23
94 rdf:type schema:Person
95 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
96 https://doi.org/10.1007/978-1-4757-2440-0
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/978-3-540-69905-7_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009665193
99 https://doi.org/10.1007/978-3-540-69905-7_27
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.sigpro.2012.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017171005
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/34.667881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156743
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/icpr.2010.1128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093244141
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/tsa.2002.800560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061786085
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.20384.3d schema:alternateName Institute for Systems and Computer Engineering of Porto
110 schema:name Institute for Systems and Computer Engineering of Porto (INESC), Porto, Portugal
111 rdf:type schema:Organization
112 https://www.grid.ac/institutes/grid.20736.30 schema:alternateName Federal University of Paraná
113 schema:name Federal University of Paraná (UFPR), Curitiba, PR, Brazil
114 rdf:type schema:Organization
115 https://www.grid.ac/institutes/grid.271762.7 schema:alternateName State University of Maringa
116 schema:name State University of Maringá (UEM), Maringá, PR, Brazil
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...