Music Genre Recognition Using Gabor Filters and LPQ Texture Descriptors View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2013

AUTHORS

Yandre Costa , Luiz Oliveira , Alessandro Koerich , Fabien Gouyon

ABSTRACT

This paper presents a novel approach for automatic music genre recognition in the visual domain that uses two texture descriptors. For this, the audio signal is converted into spectrograms and then textural features are extracted from this visual representation. Gabor filters and LPQ texture descriptors were used to capture the spectrogram content. In order to evaluate the performance of local feature extraction, some different zoning mechanisms were taken into account. The experiments were performed on the Latin Music Database. At the end, we have shown that the SVM classifier trained with LPQ is able to achieve a recognition rate above 80%. This rate is among the best results ever presented in the literature. More... »

PAGES

67-74

References to SciGraph publications

Book

TITLE

Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications

ISBN

978-3-642-41826-6
978-3-642-41827-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-41827-3_9

DOI

http://dx.doi.org/10.1007/978-3-642-41827-3_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017719759


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State University of Maringa", 
          "id": "https://www.grid.ac/institutes/grid.271762.7", 
          "name": [
            "State University of Maring\u00e1 (UEM), Maring\u00e1, PR, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Costa", 
        "givenName": "Yandre", 
        "id": "sg:person.013010125227.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013010125227.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.20736.30", 
          "name": [
            "Federal University of Paran\u00e1 (UFPR), Curitiba, PR, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oliveira", 
        "givenName": "Luiz", 
        "id": "sg:person.015252575101.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015252575101.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.20736.30", 
          "name": [
            "Federal University of Paran\u00e1 (UFPR), Curitiba, PR, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koerich", 
        "givenName": "Alessandro", 
        "id": "sg:person.014610011263.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014610011263.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Systems and Computer Engineering of Porto", 
          "id": "https://www.grid.ac/institutes/grid.20384.3d", 
          "name": [
            "Institute for Systems and Computer Engineering of Porto (INESC), Porto, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gouyon", 
        "givenName": "Fabien", 
        "id": "sg:person.0765006334.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765006334.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-69905-7_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009665193", 
          "https://doi.org/10.1007/978-3-540-69905-7_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-69905-7_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009665193", 
          "https://doi.org/10.1007/978-3-540-69905-7_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2012.04.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017171005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.667881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsa.2002.800560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061786085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2010.1128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093244141"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "This paper presents a novel approach for automatic music genre recognition in the visual domain that uses two texture descriptors. For this, the audio signal is converted into spectrograms and then textural features are extracted from this visual representation. Gabor filters and LPQ texture descriptors were used to capture the spectrogram content. In order to evaluate the performance of local feature extraction, some different zoning mechanisms were taken into account. The experiments were performed on the Latin Music Database. At the end, we have shown that the SVM classifier trained with LPQ is able to achieve a recognition rate above 80%. This rate is among the best results ever presented in the literature.", 
    "editor": [
      {
        "familyName": "Ruiz-Shulcloper", 
        "givenName": "Jos\u00e9", 
        "type": "Person"
      }, 
      {
        "familyName": "Sanniti di Baja", 
        "givenName": "Gabriella", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-41827-3_9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-41826-6", 
        "978-3-642-41827-3"
      ], 
      "name": "Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications", 
      "type": "Book"
    }, 
    "name": "Music Genre Recognition Using Gabor Filters and LPQ Texture Descriptors", 
    "pagination": "67-74", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-41827-3_9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "546d8cdffe1a9e5d1ddda4e25b3c69fa5bdb042e27efe9e43b379e1861cbf748"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017719759"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-41827-3_9", 
      "https://app.dimensions.ai/details/publication/pub.1017719759"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000254.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-41827-3_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41827-3_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41827-3_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41827-3_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41827-3_9'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-41827-3_9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb9d53530b639486ca17d909abb58aabe
4 schema:citation sg:pub.10.1007/978-1-4757-2440-0
5 sg:pub.10.1007/978-3-540-69905-7_27
6 https://doi.org/10.1016/j.sigpro.2012.04.023
7 https://doi.org/10.1109/34.667881
8 https://doi.org/10.1109/icpr.2010.1128
9 https://doi.org/10.1109/tsa.2002.800560
10 schema:datePublished 2013
11 schema:datePublishedReg 2013-01-01
12 schema:description This paper presents a novel approach for automatic music genre recognition in the visual domain that uses two texture descriptors. For this, the audio signal is converted into spectrograms and then textural features are extracted from this visual representation. Gabor filters and LPQ texture descriptors were used to capture the spectrogram content. In order to evaluate the performance of local feature extraction, some different zoning mechanisms were taken into account. The experiments were performed on the Latin Music Database. At the end, we have shown that the SVM classifier trained with LPQ is able to achieve a recognition rate above 80%. This rate is among the best results ever presented in the literature.
13 schema:editor N9feb148a241048539f876274f63776a5
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N862a2dc40eae414a909d745615307fbd
18 schema:name Music Genre Recognition Using Gabor Filters and LPQ Texture Descriptors
19 schema:pagination 67-74
20 schema:productId N6ed310741a334aaea7f60f94737a8c3c
21 N8fb34357b0634b98b9f9b4590da66a70
22 Nbf7f8fe64c9b41fe9371c8ed104af4f9
23 schema:publisher N9cab1e64125247ea9d3cdd0828b75c14
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017719759
25 https://doi.org/10.1007/978-3-642-41827-3_9
26 schema:sdDatePublished 2019-04-15T13:27
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N128fa76900774787890e236acae02e5c
29 schema:url http://link.springer.com/10.1007/978-3-642-41827-3_9
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N128fa76900774787890e236acae02e5c schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N6ed310741a334aaea7f60f94737a8c3c schema:name readcube_id
36 schema:value 546d8cdffe1a9e5d1ddda4e25b3c69fa5bdb042e27efe9e43b379e1861cbf748
37 rdf:type schema:PropertyValue
38 N7d98052a3d5c458bb09195268d3d80f4 schema:familyName Ruiz-Shulcloper
39 schema:givenName José
40 rdf:type schema:Person
41 N862a2dc40eae414a909d745615307fbd schema:isbn 978-3-642-41826-6
42 978-3-642-41827-3
43 schema:name Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
44 rdf:type schema:Book
45 N8fb34357b0634b98b9f9b4590da66a70 schema:name dimensions_id
46 schema:value pub.1017719759
47 rdf:type schema:PropertyValue
48 N90ff1719428d493eaf64891d4207e6c3 rdf:first sg:person.014610011263.26
49 rdf:rest Na3b9d2a4bfbf4ef8a311be17690adf2d
50 N9cab1e64125247ea9d3cdd0828b75c14 schema:location Berlin, Heidelberg
51 schema:name Springer Berlin Heidelberg
52 rdf:type schema:Organisation
53 N9ec256985e554ad3bf1107602bb7570b rdf:first sg:person.015252575101.27
54 rdf:rest N90ff1719428d493eaf64891d4207e6c3
55 N9feb148a241048539f876274f63776a5 rdf:first N7d98052a3d5c458bb09195268d3d80f4
56 rdf:rest Ncda4b36ffe204b28ad91ab9f449b2c75
57 Na3b9d2a4bfbf4ef8a311be17690adf2d rdf:first sg:person.0765006334.23
58 rdf:rest rdf:nil
59 Nb9d53530b639486ca17d909abb58aabe rdf:first sg:person.013010125227.30
60 rdf:rest N9ec256985e554ad3bf1107602bb7570b
61 Nbf7f8fe64c9b41fe9371c8ed104af4f9 schema:name doi
62 schema:value 10.1007/978-3-642-41827-3_9
63 rdf:type schema:PropertyValue
64 Ncda4b36ffe204b28ad91ab9f449b2c75 rdf:first Nfe883edaf4724d92b2d27bd8f2f70d83
65 rdf:rest rdf:nil
66 Nfe883edaf4724d92b2d27bd8f2f70d83 schema:familyName Sanniti di Baja
67 schema:givenName Gabriella
68 rdf:type schema:Person
69 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
70 schema:name Information and Computing Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
73 schema:name Artificial Intelligence and Image Processing
74 rdf:type schema:DefinedTerm
75 sg:person.013010125227.30 schema:affiliation https://www.grid.ac/institutes/grid.271762.7
76 schema:familyName Costa
77 schema:givenName Yandre
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013010125227.30
79 rdf:type schema:Person
80 sg:person.014610011263.26 schema:affiliation https://www.grid.ac/institutes/grid.20736.30
81 schema:familyName Koerich
82 schema:givenName Alessandro
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014610011263.26
84 rdf:type schema:Person
85 sg:person.015252575101.27 schema:affiliation https://www.grid.ac/institutes/grid.20736.30
86 schema:familyName Oliveira
87 schema:givenName Luiz
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015252575101.27
89 rdf:type schema:Person
90 sg:person.0765006334.23 schema:affiliation https://www.grid.ac/institutes/grid.20384.3d
91 schema:familyName Gouyon
92 schema:givenName Fabien
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765006334.23
94 rdf:type schema:Person
95 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
96 https://doi.org/10.1007/978-1-4757-2440-0
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/978-3-540-69905-7_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009665193
99 https://doi.org/10.1007/978-3-540-69905-7_27
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.sigpro.2012.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017171005
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/34.667881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156743
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/icpr.2010.1128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093244141
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/tsa.2002.800560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061786085
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.20384.3d schema:alternateName Institute for Systems and Computer Engineering of Porto
110 schema:name Institute for Systems and Computer Engineering of Porto (INESC), Porto, Portugal
111 rdf:type schema:Organization
112 https://www.grid.ac/institutes/grid.20736.30 schema:alternateName Federal University of Paraná
113 schema:name Federal University of Paraná (UFPR), Curitiba, PR, Brazil
114 rdf:type schema:Organization
115 https://www.grid.ac/institutes/grid.271762.7 schema:alternateName State University of Maringa
116 schema:name State University of Maringá (UEM), Maringá, PR, Brazil
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...