Comparing Binary Iris Biometric Templates Based on Counting Bloom Filters View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Christian Rathgeb , Christoph Busch

ABSTRACT

In this paper a binary biometric comparator based on Counting Bloom filters is introduced. Within the proposed scheme binary biometric feature vectors are analyzed and appropriate bit sequences are mapped to Counting Bloom filters. The comparison of resulting sets of Counting Bloom filters significantly improves the biometric performance of the underlying system. The proposed approach is applied to binary iris-biometric feature vectors, i.e. iris-codes, generated from different feature extractors. Experimental evaluations, which carried out on the CASIA-v3-Interval iris database, confirm the soundness of the presented comparator. More... »

PAGES

262-269

Book

TITLE

Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications

ISBN

978-3-642-41826-6
978-3-642-41827-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-41827-3_33

DOI

http://dx.doi.org/10.1007/978-3-642-41827-3_33

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001360606


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Darmstadt University of Applied Sciences", 
          "id": "https://www.grid.ac/institutes/grid.449026.d", 
          "name": [
            "da/sec Biometrics and Internet Security Research Group, Hochschule Darmstadt, Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rathgeb", 
        "givenName": "Christian", 
        "id": "sg:person.012007746513.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012007746513.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Darmstadt University of Applied Sciences", 
          "id": "https://www.grid.ac/institutes/grid.449026.d", 
          "name": [
            "da/sec Biometrics and Internet Security Research Group, Hochschule Darmstadt, Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Busch", 
        "givenName": "Christoph", 
        "id": "sg:person.011143356603.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011143356603.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/362686.362692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007357969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cviu.2007.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011403285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1982185.1982187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028614104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/90.851975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061247530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2003.818350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061574496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2004.827237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2008.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2008.4711745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094136614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icb.2012.6199823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094139971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/secpri.1998.674831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095305013"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "In this paper a binary biometric comparator based on Counting Bloom filters is introduced. Within the proposed scheme binary biometric feature vectors are analyzed and appropriate bit sequences are mapped to Counting Bloom filters. The comparison of resulting sets of Counting Bloom filters significantly improves the biometric performance of the underlying system. The proposed approach is applied to binary iris-biometric feature vectors, i.e. iris-codes, generated from different feature extractors. Experimental evaluations, which carried out on the CASIA-v3-Interval iris database, confirm the soundness of the presented comparator.", 
    "editor": [
      {
        "familyName": "Ruiz-Shulcloper", 
        "givenName": "Jos\u00e9", 
        "type": "Person"
      }, 
      {
        "familyName": "Sanniti di Baja", 
        "givenName": "Gabriella", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-41827-3_33", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-41826-6", 
        "978-3-642-41827-3"
      ], 
      "name": "Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications", 
      "type": "Book"
    }, 
    "name": "Comparing Binary Iris Biometric Templates Based on Counting Bloom Filters", 
    "pagination": "262-269", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-41827-3_33"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "067b208a9ef70e7b3c5e45036b037caa9df5b3dd15578e7823cc7757d8a24532"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001360606"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-41827-3_33", 
      "https://app.dimensions.ai/details/publication/pub.1001360606"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000243.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-41827-3_33"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41827-3_33'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41827-3_33'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41827-3_33'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41827-3_33'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-41827-3_33 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0c74e072d74b44aca9a6cab883b9db8c
4 schema:citation https://doi.org/10.1016/j.cviu.2007.08.005
5 https://doi.org/10.1109/90.851975
6 https://doi.org/10.1109/icb.2012.6199823
7 https://doi.org/10.1109/icip.2008.4711745
8 https://doi.org/10.1109/secpri.1998.674831
9 https://doi.org/10.1109/tcsvt.2003.818350
10 https://doi.org/10.1109/tip.2004.827237
11 https://doi.org/10.1109/tpami.2008.185
12 https://doi.org/10.1145/1982185.1982187
13 https://doi.org/10.1145/362686.362692
14 schema:datePublished 2013
15 schema:datePublishedReg 2013-01-01
16 schema:description In this paper a binary biometric comparator based on Counting Bloom filters is introduced. Within the proposed scheme binary biometric feature vectors are analyzed and appropriate bit sequences are mapped to Counting Bloom filters. The comparison of resulting sets of Counting Bloom filters significantly improves the biometric performance of the underlying system. The proposed approach is applied to binary iris-biometric feature vectors, i.e. iris-codes, generated from different feature extractors. Experimental evaluations, which carried out on the CASIA-v3-Interval iris database, confirm the soundness of the presented comparator.
17 schema:editor N91816dce79314bac870c24f95737259b
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N1a7facb0a4794520ad84eef7ea02202a
22 schema:name Comparing Binary Iris Biometric Templates Based on Counting Bloom Filters
23 schema:pagination 262-269
24 schema:productId N0db91d17ab6c43bdb7d15e0760c9a27a
25 N5470e2d79e3d4c15bfb2fb53b502e913
26 N8c8ffbda5fd74b6b9af9ea547465bd88
27 schema:publisher N5bf226811bfc460bbaac9f6075de6734
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001360606
29 https://doi.org/10.1007/978-3-642-41827-3_33
30 schema:sdDatePublished 2019-04-15T21:55
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N3b42c94a605f4cc5bc89ec3b7151afdb
33 schema:url http://link.springer.com/10.1007/978-3-642-41827-3_33
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N0c74e072d74b44aca9a6cab883b9db8c rdf:first sg:person.012007746513.18
38 rdf:rest Ndd0b4eca47c648d9b01d570704fcba86
39 N0db91d17ab6c43bdb7d15e0760c9a27a schema:name dimensions_id
40 schema:value pub.1001360606
41 rdf:type schema:PropertyValue
42 N1413241f37014e27b81913b8ef081e24 rdf:first N2a6d7e3cdf02405abc084065c97054aa
43 rdf:rest rdf:nil
44 N1a7facb0a4794520ad84eef7ea02202a schema:isbn 978-3-642-41826-6
45 978-3-642-41827-3
46 schema:name Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
47 rdf:type schema:Book
48 N2a6d7e3cdf02405abc084065c97054aa schema:familyName Sanniti di Baja
49 schema:givenName Gabriella
50 rdf:type schema:Person
51 N3b42c94a605f4cc5bc89ec3b7151afdb schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N5470e2d79e3d4c15bfb2fb53b502e913 schema:name doi
54 schema:value 10.1007/978-3-642-41827-3_33
55 rdf:type schema:PropertyValue
56 N5bf226811bfc460bbaac9f6075de6734 schema:location Berlin, Heidelberg
57 schema:name Springer Berlin Heidelberg
58 rdf:type schema:Organisation
59 N8c8ffbda5fd74b6b9af9ea547465bd88 schema:name readcube_id
60 schema:value 067b208a9ef70e7b3c5e45036b037caa9df5b3dd15578e7823cc7757d8a24532
61 rdf:type schema:PropertyValue
62 N91816dce79314bac870c24f95737259b rdf:first Nd8c70e77d94b43f08225f7cad6784445
63 rdf:rest N1413241f37014e27b81913b8ef081e24
64 Nd8c70e77d94b43f08225f7cad6784445 schema:familyName Ruiz-Shulcloper
65 schema:givenName José
66 rdf:type schema:Person
67 Ndd0b4eca47c648d9b01d570704fcba86 rdf:first sg:person.011143356603.69
68 rdf:rest rdf:nil
69 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
70 schema:name Information and Computing Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
73 schema:name Artificial Intelligence and Image Processing
74 rdf:type schema:DefinedTerm
75 sg:person.011143356603.69 schema:affiliation https://www.grid.ac/institutes/grid.449026.d
76 schema:familyName Busch
77 schema:givenName Christoph
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011143356603.69
79 rdf:type schema:Person
80 sg:person.012007746513.18 schema:affiliation https://www.grid.ac/institutes/grid.449026.d
81 schema:familyName Rathgeb
82 schema:givenName Christian
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012007746513.18
84 rdf:type schema:Person
85 https://doi.org/10.1016/j.cviu.2007.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011403285
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1109/90.851975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061247530
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1109/icb.2012.6199823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094139971
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1109/icip.2008.4711745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094136614
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/secpri.1998.674831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095305013
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/tcsvt.2003.818350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061574496
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/tip.2004.827237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641029
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/tpami.2008.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743538
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1145/1982185.1982187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028614104
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1145/362686.362692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007357969
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.449026.d schema:alternateName Darmstadt University of Applied Sciences
106 schema:name da/sec Biometrics and Internet Security Research Group, Hochschule Darmstadt, Darmstadt, Germany
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...