In-Network Analytics for Ubiquitous Sensing View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2013

AUTHORS

Ittay Eyal , Idit Keidar , Stacy Patterson , Raphi Rom

ABSTRACT

We address the problem of in-network analytics for data that is generated by sensors at the edge of the network. Specifically, we consider the problem of summarizing a continuous physical phenomenon, such as temperature or pollution, over a geographic region like a road network. Samples are collected by sensors placed alongside roads as well as in cars driving along them. We divide the region into sectors and find a summary for each sector, so that their union is a continuous function that minimizes some global error function. We designate a node (either virtual or physical) that is responsible for estimating the function in each sector. Each node computes its estimate based on the samples taken in its sector and information from adjacent nodes. More... »

PAGES

507-521

References to SciGraph publications

  • 2008. Self-stabilizing Mobile Robot Formations with Virtual Nodes in STABILIZATION, SAFETY, AND SECURITY OF DISTRIBUTED SYSTEMS
  • 2001-06. Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • Book

    TITLE

    Distributed Computing

    ISBN

    978-3-642-41526-5
    978-3-642-41527-2

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-41527-2_35

    DOI

    http://dx.doi.org/10.1007/978-3-642-41527-2_35

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002516006


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Computer Science, Cornell, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eyal", 
            "givenName": "Ittay", 
            "id": "sg:person.015022230121.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015022230121.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technion \u2013 Israel Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.6451.6", 
              "name": [
                "Department of Electrical Engineering, Technion, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Keidar", 
            "givenName": "Idit", 
            "id": "sg:person.07674464077.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07674464077.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technion \u2013 Israel Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.6451.6", 
              "name": [
                "Department of Electrical Engineering, Technion, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Patterson", 
            "givenName": "Stacy", 
            "id": "sg:person.011004254263.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011004254263.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technion \u2013 Israel Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.6451.6", 
              "name": [
                "Department of Electrical Engineering, Technion, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rom", 
            "givenName": "Raphi", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.acha.2007.02.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010246687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tcs.2008.10.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010376110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/584490.584497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014927814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-89335-6_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019074756", 
              "https://doi.org/10.1007/978-3-540-89335-6_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-89335-6_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019074756", 
              "https://doi.org/10.1007/978-3-540-89335-6_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1017501703105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031311566", 
              "https://doi.org/10.1023/a:1017501703105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10556788.2010.511669", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044515849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ipl.2006.09.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053143430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jproc.2003.814918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061296138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jstsp.2011.2118740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061338064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.1986.1104412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061474635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.2008.2009515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061476822"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.2010.2041686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061477478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/08073038x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062854975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cdc.2009.5399485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094165161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511804441", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098700691"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013", 
        "datePublishedReg": "2013-01-01", 
        "description": "We address the problem of in-network analytics for data that is generated by sensors at the edge of the network. Specifically, we consider the problem of summarizing a continuous physical phenomenon, such as temperature or pollution, over a geographic region like a road network. Samples are collected by sensors placed alongside roads as well as in cars driving along them. We divide the region into sectors and find a summary for each sector, so that their union is a continuous function that minimizes some global error function. We designate a node (either virtual or physical) that is responsible for estimating the function in each sector. Each node computes its estimate based on the samples taken in its sector and information from adjacent nodes.", 
        "editor": [
          {
            "familyName": "Afek", 
            "givenName": "Yehuda", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-41527-2_35", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-642-41526-5", 
            "978-3-642-41527-2"
          ], 
          "name": "Distributed Computing", 
          "type": "Book"
        }, 
        "name": "In-Network Analytics for Ubiquitous Sensing", 
        "pagination": "507-521", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-41527-2_35"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0bfab0c67441e3e1b90bdda151656f9366338f54a3a9156392ecc11373d8f2e5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002516006"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-41527-2_35", 
          "https://app.dimensions.ai/details/publication/pub.1002516006"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T16:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000244.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-41527-2_35"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41527-2_35'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41527-2_35'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41527-2_35'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41527-2_35'


     

    This table displays all metadata directly associated to this object as RDF triples.

    134 TRIPLES      23 PREDICATES      42 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-41527-2_35 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author N7ea001ff177b4a329daaa30cdf53b001
    4 schema:citation sg:pub.10.1007/978-3-540-89335-6_16
    5 sg:pub.10.1023/a:1017501703105
    6 https://doi.org/10.1016/j.acha.2007.02.002
    7 https://doi.org/10.1016/j.ipl.2006.09.004
    8 https://doi.org/10.1016/j.tcs.2008.10.006
    9 https://doi.org/10.1017/cbo9780511804441
    10 https://doi.org/10.1080/10556788.2010.511669
    11 https://doi.org/10.1109/cdc.2009.5399485
    12 https://doi.org/10.1109/jproc.2003.814918
    13 https://doi.org/10.1109/jstsp.2011.2118740
    14 https://doi.org/10.1109/tac.1986.1104412
    15 https://doi.org/10.1109/tac.2008.2009515
    16 https://doi.org/10.1109/tac.2010.2041686
    17 https://doi.org/10.1137/08073038x
    18 https://doi.org/10.1145/584490.584497
    19 schema:datePublished 2013
    20 schema:datePublishedReg 2013-01-01
    21 schema:description We address the problem of in-network analytics for data that is generated by sensors at the edge of the network. Specifically, we consider the problem of summarizing a continuous physical phenomenon, such as temperature or pollution, over a geographic region like a road network. Samples are collected by sensors placed alongside roads as well as in cars driving along them. We divide the region into sectors and find a summary for each sector, so that their union is a continuous function that minimizes some global error function. We designate a node (either virtual or physical) that is responsible for estimating the function in each sector. Each node computes its estimate based on the samples taken in its sector and information from adjacent nodes.
    22 schema:editor N1d2146ff3cb94e2faef86051bfd5f953
    23 schema:genre chapter
    24 schema:inLanguage en
    25 schema:isAccessibleForFree true
    26 schema:isPartOf Nbf596ab3d60a45ab8a144dd2a85aaed6
    27 schema:name In-Network Analytics for Ubiquitous Sensing
    28 schema:pagination 507-521
    29 schema:productId N21c1b6e1a20b4fb9bdadb45db58dabdc
    30 N7fe678c6dde045299752a418d5eb9d6e
    31 Nac2781c513bf4513bb0beedf9c2094bb
    32 schema:publisher N9a42db84f1334a3a8337bf0e4cf2025d
    33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002516006
    34 https://doi.org/10.1007/978-3-642-41527-2_35
    35 schema:sdDatePublished 2019-04-15T16:14
    36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    37 schema:sdPublisher N204bb3aa8ff8423ab03cc767d7f73f5e
    38 schema:url http://link.springer.com/10.1007/978-3-642-41527-2_35
    39 sgo:license sg:explorer/license/
    40 sgo:sdDataset chapters
    41 rdf:type schema:Chapter
    42 N13088c70624349ce84f5de19f18a3fd2 schema:familyName Afek
    43 schema:givenName Yehuda
    44 rdf:type schema:Person
    45 N1b6433793bca4b10ae2bbb7688ede82f schema:name Department of Computer Science, Cornell, USA
    46 rdf:type schema:Organization
    47 N1c139fefad6840edb353355b8cf3e4f8 rdf:first sg:person.07674464077.03
    48 rdf:rest N7ba6225590794dcdbdd47aee66679419
    49 N1d2146ff3cb94e2faef86051bfd5f953 rdf:first N13088c70624349ce84f5de19f18a3fd2
    50 rdf:rest rdf:nil
    51 N204bb3aa8ff8423ab03cc767d7f73f5e schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 N21c1b6e1a20b4fb9bdadb45db58dabdc schema:name doi
    54 schema:value 10.1007/978-3-642-41527-2_35
    55 rdf:type schema:PropertyValue
    56 N7ba6225590794dcdbdd47aee66679419 rdf:first sg:person.011004254263.25
    57 rdf:rest N94f9bae3e0ce48828f1ab6e4c08b265c
    58 N7ea001ff177b4a329daaa30cdf53b001 rdf:first sg:person.015022230121.71
    59 rdf:rest N1c139fefad6840edb353355b8cf3e4f8
    60 N7fe678c6dde045299752a418d5eb9d6e schema:name dimensions_id
    61 schema:value pub.1002516006
    62 rdf:type schema:PropertyValue
    63 N94f9bae3e0ce48828f1ab6e4c08b265c rdf:first Nee6511737fea4bdab4d266f7d64ea8d2
    64 rdf:rest rdf:nil
    65 N9a42db84f1334a3a8337bf0e4cf2025d schema:location Berlin, Heidelberg
    66 schema:name Springer Berlin Heidelberg
    67 rdf:type schema:Organisation
    68 Nac2781c513bf4513bb0beedf9c2094bb schema:name readcube_id
    69 schema:value 0bfab0c67441e3e1b90bdda151656f9366338f54a3a9156392ecc11373d8f2e5
    70 rdf:type schema:PropertyValue
    71 Nbf596ab3d60a45ab8a144dd2a85aaed6 schema:isbn 978-3-642-41526-5
    72 978-3-642-41527-2
    73 schema:name Distributed Computing
    74 rdf:type schema:Book
    75 Nee6511737fea4bdab4d266f7d64ea8d2 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
    76 schema:familyName Rom
    77 schema:givenName Raphi
    78 rdf:type schema:Person
    79 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Information and Computing Sciences
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Information Systems
    84 rdf:type schema:DefinedTerm
    85 sg:person.011004254263.25 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
    86 schema:familyName Patterson
    87 schema:givenName Stacy
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011004254263.25
    89 rdf:type schema:Person
    90 sg:person.015022230121.71 schema:affiliation N1b6433793bca4b10ae2bbb7688ede82f
    91 schema:familyName Eyal
    92 schema:givenName Ittay
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015022230121.71
    94 rdf:type schema:Person
    95 sg:person.07674464077.03 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
    96 schema:familyName Keidar
    97 schema:givenName Idit
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07674464077.03
    99 rdf:type schema:Person
    100 sg:pub.10.1007/978-3-540-89335-6_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019074756
    101 https://doi.org/10.1007/978-3-540-89335-6_16
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1023/a:1017501703105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031311566
    104 https://doi.org/10.1023/a:1017501703105
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/j.acha.2007.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010246687
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/j.ipl.2006.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053143430
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/j.tcs.2008.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010376110
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1017/cbo9780511804441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098700691
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1080/10556788.2010.511669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044515849
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1109/cdc.2009.5399485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094165161
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1109/jproc.2003.814918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061296138
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1109/jstsp.2011.2118740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061338064
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1109/tac.1986.1104412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061474635
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1109/tac.2008.2009515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061476822
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1109/tac.2010.2041686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061477478
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1137/08073038x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062854975
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1145/584490.584497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014927814
    131 rdf:type schema:CreativeWork
    132 https://www.grid.ac/institutes/grid.6451.6 schema:alternateName Technion – Israel Institute of Technology
    133 schema:name Department of Electrical Engineering, Technion, Israel
    134 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...