Use Knowledge to Learn Faster: Topology Recognition with Advice View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2013

AUTHORS

Emanuele Guido Fusco , Andrzej Pelc , Rossella Petreschi

ABSTRACT

We investigate tradeoffs between the time in which topology recognition is accomplished and the minimum size of advice that has to be given to nodes. We provide upper and lower bounds on the minimum size of advice that is sufficient to perform topology recognition in a given time, in the class of all graphs of size n and diameter D ≤ αn, for any constant α D − k, where 0 k ≤ D, then the optimal size of advice is Θ((n 2 logn)/(D − k + 1)). If the allotted time is D, then this optimal size is Θ(n logn). If the allotted time is D + k, where 0 k ≤ D/2, then the optimal size of advice is Θ(1 + (logn) / k). The only remaining gap between our bounds is for time D + k, where D/2 k ≤ D. In this time interval our upper bound remains O(1 + (logn) / k), while the lower bound (that holds for any time) is 1. This leaves a gap if D ∈ o(logn). Finally, we show that for time 2D + 1, one bit of advice is both necessary and sufficient. Our results show how sensitive is the minimum size of advice to the time allowed for topology recognition: allowing just one round more, from D to D + 1, decreases exponentially the advice needed to accomplish this task. More... »

PAGES

31-45

References to SciGraph publications

Book

TITLE

Distributed Computing

ISBN

978-3-642-41526-5
978-3-642-41527-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-41527-2_3

DOI

http://dx.doi.org/10.1007/978-3-642-41527-2_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048545177


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Computer Science Department, Sapienza University of Rome, 00198\u00a0Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fusco", 
        "givenName": "Emanuele Guido", 
        "id": "sg:person.013526501407.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013526501407.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 du Qu\u00e9bec en Outaouais", 
          "id": "https://www.grid.ac/institutes/grid.265705.3", 
          "name": [
            "D\u00e9partement d\u2019informatique, Universit\u00e9 du Qu\u00e9bec en Outaouais, Gatineau, Qu\u00e9bec, J8X 3X7, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pelc", 
        "givenName": "Andrzej", 
        "id": "sg:person.013306156242.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013306156242.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Computer Science Department, Sapienza University of Rome, 00198\u00a0Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petreschi", 
        "givenName": "Rossella", 
        "id": "sg:person.011402427702.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011402427702.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/79147.79158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004122197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1044731.1044732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005453136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/28395.28421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005789709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcs.2008.08.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013598340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/359024.359029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018801160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpdc.2011.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019143220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00446-010-0095-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020871573", 
          "https://doi.org/10.1007/s00446-010-0095-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00446-010-0095-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020871573", 
          "https://doi.org/10.1007/s00446-010-0095-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00446-008-0076-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024491020", 
          "https://doi.org/10.1007/s00446-008-0076-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00446-008-0076-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024491020", 
          "https://doi.org/10.1007/s00446-008-0076-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/69622.357194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032495091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00446-011-0131-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034295166", 
          "https://doi.org/10.1007/s00446-011-0131-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00224-010-9280-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035327269", 
          "https://doi.org/10.1007/s00224-010-9280-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87744-8_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035385068", 
          "https://doi.org/10.1007/978-3-540-87744-8_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87744-8_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035385068", 
          "https://doi.org/10.1007/978-3-540-87744-8_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ic.2008.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036666426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/301308.301355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037385852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/48014.48247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037496106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/inco.1994.1086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038251140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17653-1_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040509143", 
          "https://doi.org/10.1007/978-3-642-17653-1_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17653-1_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040509143", 
          "https://doi.org/10.1007/978-3-642-17653-1_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcss.2009.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047963280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalgor.2004.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050578061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcs.2010.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051513719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00453-009-9361-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051541822", 
          "https://doi.org/10.1007/s00453-009-9361-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcs.2010.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052120464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/71.481599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061217493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0097539703433912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062879473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898719772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098557268"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "We investigate tradeoffs between the time in which topology recognition is accomplished and the minimum size of advice that has to be given to nodes. We provide upper and lower bounds on the minimum size of advice that is sufficient to perform topology recognition in a given time, in the class of all graphs of size n and diameter D\u2009\u2264\u2009\u03b1n, for any constant \u03b1\u2009D\u2009\u2212\u2009k, where 0\u2009k\u2009\u2264\u2009D, then the optimal size of advice is \u0398((n 2 logn)/(D\u2009\u2212\u2009k\u2009+\u20091)). If the allotted time is D, then this optimal size is \u0398(n logn). If the allotted time is D\u2009+\u2009k, where 0\u2009k\u2009\u2264\u2009D/2, then the optimal size of advice is \u0398(1\u2009+\u2009(logn) / k). The only remaining gap between our bounds is for time D\u2009+\u2009k, where D/2\u2009k\u2009\u2264\u2009D. In this time interval our upper bound remains O(1\u2009+\u2009(logn) / k), while the lower bound (that holds for any time) is 1. This leaves a gap if D\u2009\u2208\u2009o(logn). Finally, we show that for time 2D\u2009+\u20091, one bit of advice is both necessary and sufficient. Our results show how sensitive is the minimum size of advice to the time allowed for topology recognition: allowing just one round more, from D to D\u2009+\u20091, decreases exponentially the advice needed to accomplish this task.", 
    "editor": [
      {
        "familyName": "Afek", 
        "givenName": "Yehuda", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-41527-2_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-41526-5", 
        "978-3-642-41527-2"
      ], 
      "name": "Distributed Computing", 
      "type": "Book"
    }, 
    "name": "Use Knowledge to Learn Faster: Topology Recognition with Advice", 
    "pagination": "31-45", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-41527-2_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e742bd09cbd4db13b51ba6358775487b90d2c68d3d52d959db290d048289681e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048545177"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-41527-2_3", 
      "https://app.dimensions.ai/details/publication/pub.1048545177"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000273.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-41527-2_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41527-2_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41527-2_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41527-2_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41527-2_3'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      23 PREDICATES      52 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-41527-2_3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nec4aaed2febe472293600a20d76b29ee
4 schema:citation sg:pub.10.1007/978-3-540-87744-8_20
5 sg:pub.10.1007/978-3-642-17653-1_10
6 sg:pub.10.1007/s00224-010-9280-9
7 sg:pub.10.1007/s00446-008-0076-y
8 sg:pub.10.1007/s00446-010-0095-3
9 sg:pub.10.1007/s00446-011-0131-y
10 sg:pub.10.1007/s00453-009-9361-9
11 https://doi.org/10.1006/inco.1994.1086
12 https://doi.org/10.1016/j.ic.2008.07.005
13 https://doi.org/10.1016/j.jalgor.2004.05.002
14 https://doi.org/10.1016/j.jcss.2009.07.002
15 https://doi.org/10.1016/j.jpdc.2011.10.004
16 https://doi.org/10.1016/j.tcs.2008.08.020
17 https://doi.org/10.1016/j.tcs.2010.01.004
18 https://doi.org/10.1016/j.tcs.2010.08.007
19 https://doi.org/10.1109/71.481599
20 https://doi.org/10.1137/1.9780898719772
21 https://doi.org/10.1137/s0097539703433912
22 https://doi.org/10.1145/1044731.1044732
23 https://doi.org/10.1145/28395.28421
24 https://doi.org/10.1145/301308.301355
25 https://doi.org/10.1145/359024.359029
26 https://doi.org/10.1145/48014.48247
27 https://doi.org/10.1145/69622.357194
28 https://doi.org/10.1145/79147.79158
29 schema:datePublished 2013
30 schema:datePublishedReg 2013-01-01
31 schema:description We investigate tradeoffs between the time in which topology recognition is accomplished and the minimum size of advice that has to be given to nodes. We provide upper and lower bounds on the minimum size of advice that is sufficient to perform topology recognition in a given time, in the class of all graphs of size n and diameter D ≤ αn, for any constant α D − k, where 0 k ≤ D, then the optimal size of advice is Θ((n 2 logn)/(D − k + 1)). If the allotted time is D, then this optimal size is Θ(n logn). If the allotted time is D + k, where 0 k ≤ D/2, then the optimal size of advice is Θ(1 + (logn) / k). The only remaining gap between our bounds is for time D + k, where D/2 k ≤ D. In this time interval our upper bound remains O(1 + (logn) / k), while the lower bound (that holds for any time) is 1. This leaves a gap if D ∈ o(logn). Finally, we show that for time 2D + 1, one bit of advice is both necessary and sufficient. Our results show how sensitive is the minimum size of advice to the time allowed for topology recognition: allowing just one round more, from D to D + 1, decreases exponentially the advice needed to accomplish this task.
32 schema:editor Nc61506e54ddf481ea2f3c2a35e92ca5d
33 schema:genre chapter
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N82bcbbaa43ed4350b4816314580a4991
37 schema:name Use Knowledge to Learn Faster: Topology Recognition with Advice
38 schema:pagination 31-45
39 schema:productId N1c355422a58e46778bdb45a67cb7895a
40 N47ac84a8ffb34095b9b3b32c71fb1150
41 Nffc9a30a6fd14e78a525a40e193d74b5
42 schema:publisher N3429424b1dff4d2eba9c287ef3217790
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048545177
44 https://doi.org/10.1007/978-3-642-41527-2_3
45 schema:sdDatePublished 2019-04-15T22:01
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Na011a4e88cc34c76a4283b9fdbfa55fc
48 schema:url http://link.springer.com/10.1007/978-3-642-41527-2_3
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N1c355422a58e46778bdb45a67cb7895a schema:name doi
53 schema:value 10.1007/978-3-642-41527-2_3
54 rdf:type schema:PropertyValue
55 N32dcf7c0f1194375ae8320aab29514d1 rdf:first sg:person.013306156242.32
56 rdf:rest N507fd07f21984fa4968b9f424f8a350c
57 N3429424b1dff4d2eba9c287ef3217790 schema:location Berlin, Heidelberg
58 schema:name Springer Berlin Heidelberg
59 rdf:type schema:Organisation
60 N47ac84a8ffb34095b9b3b32c71fb1150 schema:name readcube_id
61 schema:value e742bd09cbd4db13b51ba6358775487b90d2c68d3d52d959db290d048289681e
62 rdf:type schema:PropertyValue
63 N5029d9f5392f4711b9525ad53e3aba8b schema:familyName Afek
64 schema:givenName Yehuda
65 rdf:type schema:Person
66 N507fd07f21984fa4968b9f424f8a350c rdf:first sg:person.011402427702.78
67 rdf:rest rdf:nil
68 N82bcbbaa43ed4350b4816314580a4991 schema:isbn 978-3-642-41526-5
69 978-3-642-41527-2
70 schema:name Distributed Computing
71 rdf:type schema:Book
72 Na011a4e88cc34c76a4283b9fdbfa55fc schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nc61506e54ddf481ea2f3c2a35e92ca5d rdf:first N5029d9f5392f4711b9525ad53e3aba8b
75 rdf:rest rdf:nil
76 Nec4aaed2febe472293600a20d76b29ee rdf:first sg:person.013526501407.57
77 rdf:rest N32dcf7c0f1194375ae8320aab29514d1
78 Nffc9a30a6fd14e78a525a40e193d74b5 schema:name dimensions_id
79 schema:value pub.1048545177
80 rdf:type schema:PropertyValue
81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
82 schema:name Information and Computing Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
85 schema:name Artificial Intelligence and Image Processing
86 rdf:type schema:DefinedTerm
87 sg:person.011402427702.78 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
88 schema:familyName Petreschi
89 schema:givenName Rossella
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011402427702.78
91 rdf:type schema:Person
92 sg:person.013306156242.32 schema:affiliation https://www.grid.ac/institutes/grid.265705.3
93 schema:familyName Pelc
94 schema:givenName Andrzej
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013306156242.32
96 rdf:type schema:Person
97 sg:person.013526501407.57 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
98 schema:familyName Fusco
99 schema:givenName Emanuele Guido
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013526501407.57
101 rdf:type schema:Person
102 sg:pub.10.1007/978-3-540-87744-8_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035385068
103 https://doi.org/10.1007/978-3-540-87744-8_20
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/978-3-642-17653-1_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040509143
106 https://doi.org/10.1007/978-3-642-17653-1_10
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00224-010-9280-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035327269
109 https://doi.org/10.1007/s00224-010-9280-9
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00446-008-0076-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1024491020
112 https://doi.org/10.1007/s00446-008-0076-y
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s00446-010-0095-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020871573
115 https://doi.org/10.1007/s00446-010-0095-3
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00446-011-0131-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1034295166
118 https://doi.org/10.1007/s00446-011-0131-y
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00453-009-9361-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051541822
121 https://doi.org/10.1007/s00453-009-9361-9
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1006/inco.1994.1086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038251140
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.ic.2008.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036666426
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jalgor.2004.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050578061
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.jcss.2009.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047963280
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.jpdc.2011.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019143220
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.tcs.2008.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013598340
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.tcs.2010.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051513719
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.tcs.2010.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052120464
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/71.481599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061217493
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1137/1.9780898719772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098557268
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1137/s0097539703433912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062879473
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1145/1044731.1044732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005453136
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1145/28395.28421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005789709
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1145/301308.301355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037385852
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1145/359024.359029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018801160
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1145/48014.48247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037496106
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1145/69622.357194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032495091
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1145/79147.79158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004122197
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.265705.3 schema:alternateName Université du Québec en Outaouais
160 schema:name Département d’informatique, Université du Québec en Outaouais, Gatineau, Québec, J8X 3X7, Canada
161 rdf:type schema:Organization
162 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
163 schema:name Computer Science Department, Sapienza University of Rome, 00198 Rome, Italy
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...