Respiratory Motion Estimation with Hybrid Implementation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Suk Jin Lee , Yuichi Motai

ABSTRACT

The extended Kalman filter (EKF) can be used for the purpose of training nonlinear neural networks to perform desired input–output mappings. To improve the computational requirements of the EKF, Puskorius et al. proposed the decoupled extended Kalman filter (DEKF) as a practical remedy for the proper management of computational resources. This approach, however, sacrifices computational accuracy of estimates because it ignores the interactions between the estimates of mutually exclusive weights. To overcome such a limitation, therefore, we proposed hybrid implementation based on EKF (HEKF) for respiratory motion estimate, which uses the channel number for the mutually exclusive groups and the coupling technique to compensate the computational accuracy. Moreover, the authors restricted to a DEKF algorithm for which the weights connecting inputs to a node are grouped together. If there are multiple input training sequences with respect to time stamp, the complexity can increase by the power of input channel number. To improve the computational complexity, we split the complicated neural network into a couple of the simple neural networks to adjust separate input channels. The experiment results validated that the prediction overshoot of the proposed HEKF was improved by 62.95 % in the average prediction overshoot values. The proposed HEKF showed the better performance by 52.40 % improvement in the average of the prediction time horizon. We have evaluated that a proposed HEKF can outperform DEKF by comparing the prediction overshoot values, the performance of tracking estimation value and the normalized root mean squared error (NRMSE). More... »

PAGES

67-89

References to SciGraph publications

  • 2008-06. Predicting respiratory motion signals for image-guided radiotherapy using multi-step linear methods (MULIN) in INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY
  • Book

    TITLE

    Prediction and Classification of Respiratory Motion

    ISBN

    978-3-642-41508-1
    978-3-642-41509-8

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-41509-8_4

    DOI

    http://dx.doi.org/10.1007/978-3-642-41509-8_4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039625494


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Texas A&M University \u2013 Texarkana", 
              "id": "https://www.grid.ac/institutes/grid.264762.3", 
              "name": [
                "Department of Computer Science, Texas A&M University\u2014Texarkana, Texarkana, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Suk Jin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Virginia Commonwealth University", 
              "id": "https://www.grid.ac/institutes/grid.224260.0", 
              "name": [
                "Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Motai", 
            "givenName": "Yuichi", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1080/09540098908915631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004260369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neunet.2006.01.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007057440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.csda.2006.02.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013770816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.1771931", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018281235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11548-008-0211-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032173165", 
              "https://doi.org/10.1007/s11548-008-0211-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1993.5.2.165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036728412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/0020718508961129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037361692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.3026608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040649627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bspc.2008.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042606613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00207178908559683", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046428762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2009.2025294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046622617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1989.1.2.270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047038492"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.2836416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053110027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jpdc.2001.1807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054491397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1997.10474027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058305276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/49/3/006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059025410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/51/22/012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059026324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/52/22/007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059026858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/52/23/024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059026893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/53/6/010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059027525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.59.2229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060795871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.59.2229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060795871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.141559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061155675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/41.170966", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061168694"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/41.170969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061168697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/41.293877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061168851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/41.3075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061168908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/41.510642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061169145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/41.87587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061169714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/41.969385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061169881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/5.58337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061179726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.279191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061218426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.410363", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061218649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.478409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061218714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.80202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061219259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2006.885123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061622646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2007.896492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061622916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2008.2003319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061623203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2008.917081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061623422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2008.918615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061623481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2008.921255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061623525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2008.922605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061623553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2008.925315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061623584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2009.2018433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061623785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2009.2022514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061623863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2009.2027250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061623989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2009.2033489", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061624178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2010.2043035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061624388"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014", 
        "datePublishedReg": "2014-01-01", 
        "description": "The extended Kalman filter (EKF) can be used for the purpose of training nonlinear neural networks to perform desired input\u2013output mappings. To improve the computational requirements of the EKF, Puskorius et al. proposed the decoupled extended Kalman filter (DEKF) as a practical remedy for the proper management of computational resources. This approach, however, sacrifices computational accuracy of estimates because it ignores the interactions between the estimates of mutually exclusive weights. To overcome such a limitation, therefore, we proposed hybrid implementation based on EKF (HEKF) for respiratory motion estimate, which uses the channel number for the mutually exclusive groups and the coupling technique to compensate the computational accuracy. Moreover, the authors restricted to a DEKF algorithm for which the weights connecting inputs to a node are grouped together. If there are multiple input training sequences with respect to time stamp, the complexity can increase by the power of input channel number. To improve the computational complexity, we split the complicated neural network into a couple of the simple neural networks to adjust separate input channels. The experiment results validated that the prediction overshoot of the proposed HEKF was improved by 62.95\u00a0% in the average prediction overshoot values. The proposed HEKF showed the better performance by 52.40\u00a0% improvement in the average of the prediction time horizon. We have evaluated that a proposed HEKF can outperform DEKF by comparing the prediction overshoot values, the performance of tracking estimation value and the normalized root mean squared error (NRMSE).", 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-41509-8_4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-41508-1", 
            "978-3-642-41509-8"
          ], 
          "name": "Prediction and Classification of Respiratory Motion", 
          "type": "Book"
        }, 
        "name": "Respiratory Motion Estimation with Hybrid Implementation", 
        "pagination": "67-89", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-41509-8_4"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bcc1be088afbe9feef24b20aa15d7ce0d23a68a61134ef392d2e3a91893048ca"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039625494"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-41509-8_4", 
          "https://app.dimensions.ai/details/publication/pub.1039625494"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T20:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000267.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-41509-8_4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41509-8_4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41509-8_4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41509-8_4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41509-8_4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    209 TRIPLES      22 PREDICATES      73 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-41509-8_4 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N257a37e18b9544e699adfa22285f62a4
    4 schema:citation sg:pub.10.1007/s11548-008-0211-z
    5 https://doi.org/10.1006/jpdc.2001.1807
    6 https://doi.org/10.1016/j.bspc.2008.06.001
    7 https://doi.org/10.1016/j.csda.2006.02.006
    8 https://doi.org/10.1016/j.neunet.2006.01.012
    9 https://doi.org/10.1080/00207178908559683
    10 https://doi.org/10.1080/0020718508961129
    11 https://doi.org/10.1080/01621459.1997.10474027
    12 https://doi.org/10.1080/09540098908915631
    13 https://doi.org/10.1088/0031-9155/49/3/006
    14 https://doi.org/10.1088/0031-9155/51/22/012
    15 https://doi.org/10.1088/0031-9155/52/22/007
    16 https://doi.org/10.1088/0031-9155/52/23/024
    17 https://doi.org/10.1088/0031-9155/53/6/010
    18 https://doi.org/10.1103/physrevlett.59.2229
    19 https://doi.org/10.1109/34.141559
    20 https://doi.org/10.1109/41.170966
    21 https://doi.org/10.1109/41.170969
    22 https://doi.org/10.1109/41.293877
    23 https://doi.org/10.1109/41.3075
    24 https://doi.org/10.1109/41.510642
    25 https://doi.org/10.1109/41.87587
    26 https://doi.org/10.1109/41.969385
    27 https://doi.org/10.1109/5.58337
    28 https://doi.org/10.1109/72.279191
    29 https://doi.org/10.1109/72.410363
    30 https://doi.org/10.1109/72.478409
    31 https://doi.org/10.1109/72.80202
    32 https://doi.org/10.1109/tie.2006.885123
    33 https://doi.org/10.1109/tie.2007.896492
    34 https://doi.org/10.1109/tie.2008.2003319
    35 https://doi.org/10.1109/tie.2008.917081
    36 https://doi.org/10.1109/tie.2008.918615
    37 https://doi.org/10.1109/tie.2008.921255
    38 https://doi.org/10.1109/tie.2008.922605
    39 https://doi.org/10.1109/tie.2008.925315
    40 https://doi.org/10.1109/tie.2009.2018433
    41 https://doi.org/10.1109/tie.2009.2022514
    42 https://doi.org/10.1109/tie.2009.2025294
    43 https://doi.org/10.1109/tie.2009.2027250
    44 https://doi.org/10.1109/tie.2009.2033489
    45 https://doi.org/10.1109/tie.2010.2043035
    46 https://doi.org/10.1118/1.1771931
    47 https://doi.org/10.1118/1.2836416
    48 https://doi.org/10.1118/1.3026608
    49 https://doi.org/10.1162/neco.1989.1.2.270
    50 https://doi.org/10.1162/neco.1993.5.2.165
    51 schema:datePublished 2014
    52 schema:datePublishedReg 2014-01-01
    53 schema:description The extended Kalman filter (EKF) can be used for the purpose of training nonlinear neural networks to perform desired input–output mappings. To improve the computational requirements of the EKF, Puskorius et al. proposed the decoupled extended Kalman filter (DEKF) as a practical remedy for the proper management of computational resources. This approach, however, sacrifices computational accuracy of estimates because it ignores the interactions between the estimates of mutually exclusive weights. To overcome such a limitation, therefore, we proposed hybrid implementation based on EKF (HEKF) for respiratory motion estimate, which uses the channel number for the mutually exclusive groups and the coupling technique to compensate the computational accuracy. Moreover, the authors restricted to a DEKF algorithm for which the weights connecting inputs to a node are grouped together. If there are multiple input training sequences with respect to time stamp, the complexity can increase by the power of input channel number. To improve the computational complexity, we split the complicated neural network into a couple of the simple neural networks to adjust separate input channels. The experiment results validated that the prediction overshoot of the proposed HEKF was improved by 62.95 % in the average prediction overshoot values. The proposed HEKF showed the better performance by 52.40 % improvement in the average of the prediction time horizon. We have evaluated that a proposed HEKF can outperform DEKF by comparing the prediction overshoot values, the performance of tracking estimation value and the normalized root mean squared error (NRMSE).
    54 schema:genre chapter
    55 schema:inLanguage en
    56 schema:isAccessibleForFree false
    57 schema:isPartOf Ne6f4e76d6aed44e0982ff60a2d44ce9c
    58 schema:name Respiratory Motion Estimation with Hybrid Implementation
    59 schema:pagination 67-89
    60 schema:productId N112a6a7707434592b10dd34b9750a154
    61 N6650e09a28bf411e8232c9632abb2d72
    62 Ne8f99f3743704eeeb462b854320b479f
    63 schema:publisher Ne828aa065f7f4f1bb771c90cb13fec0e
    64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039625494
    65 https://doi.org/10.1007/978-3-642-41509-8_4
    66 schema:sdDatePublished 2019-04-15T20:07
    67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    68 schema:sdPublisher N1069866adba94211962cf20fa68c3704
    69 schema:url http://link.springer.com/10.1007/978-3-642-41509-8_4
    70 sgo:license sg:explorer/license/
    71 sgo:sdDataset chapters
    72 rdf:type schema:Chapter
    73 N1069866adba94211962cf20fa68c3704 schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 N112a6a7707434592b10dd34b9750a154 schema:name doi
    76 schema:value 10.1007/978-3-642-41509-8_4
    77 rdf:type schema:PropertyValue
    78 N257a37e18b9544e699adfa22285f62a4 rdf:first Nf4c732d319b043fca1133f9d7403459e
    79 rdf:rest N5195170cf39245eea1ed0c1a07a05a4c
    80 N4f54d8abf1ea4cb89aba3157fb496e9e schema:affiliation https://www.grid.ac/institutes/grid.224260.0
    81 schema:familyName Motai
    82 schema:givenName Yuichi
    83 rdf:type schema:Person
    84 N5195170cf39245eea1ed0c1a07a05a4c rdf:first N4f54d8abf1ea4cb89aba3157fb496e9e
    85 rdf:rest rdf:nil
    86 N6650e09a28bf411e8232c9632abb2d72 schema:name readcube_id
    87 schema:value bcc1be088afbe9feef24b20aa15d7ce0d23a68a61134ef392d2e3a91893048ca
    88 rdf:type schema:PropertyValue
    89 Ne6f4e76d6aed44e0982ff60a2d44ce9c schema:isbn 978-3-642-41508-1
    90 978-3-642-41509-8
    91 schema:name Prediction and Classification of Respiratory Motion
    92 rdf:type schema:Book
    93 Ne828aa065f7f4f1bb771c90cb13fec0e schema:location Berlin, Heidelberg
    94 schema:name Springer Berlin Heidelberg
    95 rdf:type schema:Organisation
    96 Ne8f99f3743704eeeb462b854320b479f schema:name dimensions_id
    97 schema:value pub.1039625494
    98 rdf:type schema:PropertyValue
    99 Nf4c732d319b043fca1133f9d7403459e schema:affiliation https://www.grid.ac/institutes/grid.264762.3
    100 schema:familyName Lee
    101 schema:givenName Suk Jin
    102 rdf:type schema:Person
    103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Information and Computing Sciences
    105 rdf:type schema:DefinedTerm
    106 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Artificial Intelligence and Image Processing
    108 rdf:type schema:DefinedTerm
    109 sg:pub.10.1007/s11548-008-0211-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032173165
    110 https://doi.org/10.1007/s11548-008-0211-z
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1006/jpdc.2001.1807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054491397
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.bspc.2008.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042606613
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.csda.2006.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013770816
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.neunet.2006.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007057440
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1080/00207178908559683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046428762
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1080/0020718508961129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037361692
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1080/01621459.1997.10474027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305276
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1080/09540098908915631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004260369
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1088/0031-9155/49/3/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059025410
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1088/0031-9155/51/22/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059026324
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1088/0031-9155/52/22/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059026858
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1088/0031-9155/52/23/024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059026893
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1088/0031-9155/53/6/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059027525
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1103/physrevlett.59.2229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795871
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/34.141559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061155675
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/41.170966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061168694
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/41.170969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061168697
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/41.293877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061168851
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/41.3075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061168908
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/41.510642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061169145
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/41.87587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061169714
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1109/41.969385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061169881
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1109/5.58337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179726
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1109/72.279191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218426
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1109/72.410363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218649
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1109/72.478409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218714
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/72.80202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219259
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/tie.2006.885123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061622646
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1109/tie.2007.896492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061622916
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1109/tie.2008.2003319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061623203
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1109/tie.2008.917081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061623422
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1109/tie.2008.918615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061623481
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1109/tie.2008.921255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061623525
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1109/tie.2008.922605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061623553
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1109/tie.2008.925315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061623584
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1109/tie.2009.2018433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061623785
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1109/tie.2009.2022514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061623863
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1109/tie.2009.2025294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046622617
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1109/tie.2009.2027250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061623989
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1109/tie.2009.2033489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061624178
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1109/tie.2010.2043035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061624388
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1118/1.1771931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018281235
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1118/1.2836416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053110027
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1118/1.3026608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040649627
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1162/neco.1989.1.2.270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047038492
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1162/neco.1993.5.2.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036728412
    203 rdf:type schema:CreativeWork
    204 https://www.grid.ac/institutes/grid.224260.0 schema:alternateName Virginia Commonwealth University
    205 schema:name Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, USA
    206 rdf:type schema:Organization
    207 https://www.grid.ac/institutes/grid.264762.3 schema:alternateName Texas A&M University – Texarkana
    208 schema:name Department of Computer Science, Texas A&M University—Texarkana, Texarkana, TX, USA
    209 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...