Phantom: Prediction of Human Motion with Distributed Body Sensors View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Suk Jin Lee , Yuichi Motai

ABSTRACT

Tracking human motion with distributed body sensors has the potential to promote a large number of applications such as health care, medical monitoring, and sports medicine. In distributed sensory systems, the system architecture and data processing cannot perform the expected outcomes because of the limitations of data association. For the collaborative and complementary applications of motion tracking (Polhemus Liberty AC magnetic tracker), we propose a distributed sensory system with multi-channel interacting multiple model estimator (MC-IMME). To figure out interactive relationships among distributed sensors, we used a Gaussian mixture model (GMM) for clustering. With a collaborative grouping method based on GMM and expectation-maximization (EM) algorithm for distributed sensors, we can estimate the interactive relationship of multiple sensor channels and achieve the efficient target estimation to employ a tracking relationship within a cluster. Using multiple models with improved control of filter divergence, the proposed MC-IMME can achieve the efficient estimation of the measurement as well as the velocity from measured datasets with distributed sensory data. We have newly developed MC-IMME to improve overall performance with a Markov switch probability and a proper grouping method. The experiment results showed that the prediction overshoot error can be improved in the average 19.31 % with employing a tracking relationship. More... »

PAGES

39-66

References to SciGraph publications

  • 2002-02. A Greedy EM Algorithm for Gaussian Mixture Learning in NEURAL PROCESSING LETTERS
  • 2004-07. Clustering Large Graphs via the Singular Value Decomposition in MACHINE LEARNING
  • 2002-04. Bayesian Clustering by Dynamics in MACHINE LEARNING
  • 2005-03. How Fast Is the k-Means Method? in ALGORITHMICA
  • 2007-12. A tutorial on spectral clustering in STATISTICS AND COMPUTING
  • Book

    TITLE

    Prediction and Classification of Respiratory Motion

    ISBN

    978-3-642-41508-1
    978-3-642-41509-8

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-41509-8_3

    DOI

    http://dx.doi.org/10.1007/978-3-642-41509-8_3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033666652


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Texas A&M University \u2013 Texarkana", 
              "id": "https://www.grid.ac/institutes/grid.264762.3", 
              "name": [
                "Department of Computer Science, Texas A&M University\u2014Texarkana, Texarkana, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Suk Jin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Virginia Commonwealth University", 
              "id": "https://www.grid.ac/institutes/grid.224260.0", 
              "name": [
                "Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Motai", 
            "givenName": "Yuichi", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1013844811137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004228510", 
              "https://doi.org/10.1023/a:1013844811137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11222-007-9033-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008067612", 
              "https://doi.org/10.1007/s11222-007-9033-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11222-007-9033-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008067612", 
              "https://doi.org/10.1007/s11222-007-9033-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00453-004-1127-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012019308", 
              "https://doi.org/10.1007/s00453-004-1127-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-8655(97)00121-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017508433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:mach.0000033113.59016.96", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022292789", 
              "https://doi.org/10.1023/b:mach.0000033113.59016.96"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1013635829250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023538731", 
              "https://doi.org/10.1023/a:1013635829250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.3480504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027238451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0360-3016(00)00625-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041523257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/41.499810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061169131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/7.220926", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061214333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/7.640267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061215183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/7.826329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061215554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/7.937457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061215722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/78.771032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061230646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/9.1299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061242943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/9.67304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061245613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/9.774106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061246039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.2005.854581", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061475985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/taes.2005.1561886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061484745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/taes.2008.4560196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061485079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2008.2007014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061623288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tii.2005.857617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061631722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tii.2009.2020566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061631833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tii.2009.2034514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061631865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tii.2010.2089990", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061631931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tkde.2006.183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061661570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2010.2044045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061695540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2002.1000144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061716428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2002.1017616", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2005.162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2006.168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2006.247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2008.215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tro.2008.2004488", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061784862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsp.2005.857061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061799776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsp.2007.900167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061800783"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014", 
        "datePublishedReg": "2014-01-01", 
        "description": "Tracking human motion with distributed body sensors has the potential to promote a large number of applications such as health care, medical monitoring, and sports medicine. In distributed sensory systems, the system architecture and data processing cannot perform the expected outcomes because of the limitations of data association. For the collaborative and complementary applications of motion tracking (Polhemus Liberty AC magnetic tracker), we propose a distributed sensory system with multi-channel interacting multiple model estimator (MC-IMME). To figure out interactive relationships among distributed sensors, we used a Gaussian mixture model (GMM) for clustering. With a collaborative grouping method based on GMM and expectation-maximization (EM) algorithm for distributed sensors, we can estimate the interactive relationship of multiple sensor channels and achieve the efficient target estimation to employ a tracking relationship within a cluster. Using multiple models with improved control of filter divergence, the proposed MC-IMME can achieve the efficient estimation of the measurement as well as the velocity from measured datasets with distributed sensory data. We have newly developed MC-IMME to improve overall performance with a Markov switch probability and a proper grouping method. The experiment results showed that the prediction overshoot error can be improved in the average 19.31\u00a0% with employing a tracking relationship.", 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-41509-8_3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-41508-1", 
            "978-3-642-41509-8"
          ], 
          "name": "Prediction and Classification of Respiratory Motion", 
          "type": "Book"
        }, 
        "name": "Phantom: Prediction of Human Motion with Distributed Body Sensors", 
        "pagination": "39-66", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-41509-8_3"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a060a2a6082873504eef2c4f017f0e1b8bce6d4e2b32fa90d839facbd7009a7e"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033666652"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-41509-8_3", 
          "https://app.dimensions.ai/details/publication/pub.1033666652"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T21:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000264.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-41509-8_3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41509-8_3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41509-8_3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41509-8_3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41509-8_3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    180 TRIPLES      22 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-41509-8_3 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N1b7d2bc915d04d7da9715820333b192f
    4 schema:citation sg:pub.10.1007/s00453-004-1127-9
    5 sg:pub.10.1007/s11222-007-9033-z
    6 sg:pub.10.1023/a:1013635829250
    7 sg:pub.10.1023/a:1013844811137
    8 sg:pub.10.1023/b:mach.0000033113.59016.96
    9 https://doi.org/10.1016/s0167-8655(97)00121-9
    10 https://doi.org/10.1016/s0360-3016(00)00625-8
    11 https://doi.org/10.1109/41.499810
    12 https://doi.org/10.1109/7.220926
    13 https://doi.org/10.1109/7.640267
    14 https://doi.org/10.1109/7.826329
    15 https://doi.org/10.1109/7.937457
    16 https://doi.org/10.1109/78.771032
    17 https://doi.org/10.1109/9.1299
    18 https://doi.org/10.1109/9.67304
    19 https://doi.org/10.1109/9.774106
    20 https://doi.org/10.1109/tac.2005.854581
    21 https://doi.org/10.1109/taes.2005.1561886
    22 https://doi.org/10.1109/taes.2008.4560196
    23 https://doi.org/10.1109/tie.2008.2007014
    24 https://doi.org/10.1109/tii.2005.857617
    25 https://doi.org/10.1109/tii.2009.2020566
    26 https://doi.org/10.1109/tii.2009.2034514
    27 https://doi.org/10.1109/tii.2010.2089990
    28 https://doi.org/10.1109/tkde.2006.183
    29 https://doi.org/10.1109/tmi.2010.2044045
    30 https://doi.org/10.1109/tnn.2002.1000144
    31 https://doi.org/10.1109/tpami.2002.1017616
    32 https://doi.org/10.1109/tpami.2005.162
    33 https://doi.org/10.1109/tpami.2006.168
    34 https://doi.org/10.1109/tpami.2006.247
    35 https://doi.org/10.1109/tpami.2008.215
    36 https://doi.org/10.1109/tro.2008.2004488
    37 https://doi.org/10.1109/tsp.2005.857061
    38 https://doi.org/10.1109/tsp.2007.900167
    39 https://doi.org/10.1118/1.3480504
    40 schema:datePublished 2014
    41 schema:datePublishedReg 2014-01-01
    42 schema:description Tracking human motion with distributed body sensors has the potential to promote a large number of applications such as health care, medical monitoring, and sports medicine. In distributed sensory systems, the system architecture and data processing cannot perform the expected outcomes because of the limitations of data association. For the collaborative and complementary applications of motion tracking (Polhemus Liberty AC magnetic tracker), we propose a distributed sensory system with multi-channel interacting multiple model estimator (MC-IMME). To figure out interactive relationships among distributed sensors, we used a Gaussian mixture model (GMM) for clustering. With a collaborative grouping method based on GMM and expectation-maximization (EM) algorithm for distributed sensors, we can estimate the interactive relationship of multiple sensor channels and achieve the efficient target estimation to employ a tracking relationship within a cluster. Using multiple models with improved control of filter divergence, the proposed MC-IMME can achieve the efficient estimation of the measurement as well as the velocity from measured datasets with distributed sensory data. We have newly developed MC-IMME to improve overall performance with a Markov switch probability and a proper grouping method. The experiment results showed that the prediction overshoot error can be improved in the average 19.31 % with employing a tracking relationship.
    43 schema:genre chapter
    44 schema:inLanguage en
    45 schema:isAccessibleForFree false
    46 schema:isPartOf Nd1edfb44890e486fb8f9297f134d84a3
    47 schema:name Phantom: Prediction of Human Motion with Distributed Body Sensors
    48 schema:pagination 39-66
    49 schema:productId N0945dc57483648f3a113592f5766589b
    50 N7d17ad3e817b48a183e834d31436d720
    51 Ndcfc97d5c876481cadd44e39211d7db8
    52 schema:publisher Nb25e0a3e10fe4c2aaa456cb19d2b2057
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033666652
    54 https://doi.org/10.1007/978-3-642-41509-8_3
    55 schema:sdDatePublished 2019-04-15T21:03
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N5646ef05f64348bb9f101c1f0474d451
    58 schema:url http://link.springer.com/10.1007/978-3-642-41509-8_3
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset chapters
    61 rdf:type schema:Chapter
    62 N0945dc57483648f3a113592f5766589b schema:name readcube_id
    63 schema:value a060a2a6082873504eef2c4f017f0e1b8bce6d4e2b32fa90d839facbd7009a7e
    64 rdf:type schema:PropertyValue
    65 N1b7d2bc915d04d7da9715820333b192f rdf:first Nf72511e3559e4f3c9fd5ca94f22b0c61
    66 rdf:rest Nd834ab24ce904527a3f46d7638fe6988
    67 N5646ef05f64348bb9f101c1f0474d451 schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 N7d17ad3e817b48a183e834d31436d720 schema:name dimensions_id
    70 schema:value pub.1033666652
    71 rdf:type schema:PropertyValue
    72 Nb25e0a3e10fe4c2aaa456cb19d2b2057 schema:location Berlin, Heidelberg
    73 schema:name Springer Berlin Heidelberg
    74 rdf:type schema:Organisation
    75 Nd1edfb44890e486fb8f9297f134d84a3 schema:isbn 978-3-642-41508-1
    76 978-3-642-41509-8
    77 schema:name Prediction and Classification of Respiratory Motion
    78 rdf:type schema:Book
    79 Nd26793109f6c4bf9aedf0d8e07208d04 schema:affiliation https://www.grid.ac/institutes/grid.224260.0
    80 schema:familyName Motai
    81 schema:givenName Yuichi
    82 rdf:type schema:Person
    83 Nd834ab24ce904527a3f46d7638fe6988 rdf:first Nd26793109f6c4bf9aedf0d8e07208d04
    84 rdf:rest rdf:nil
    85 Ndcfc97d5c876481cadd44e39211d7db8 schema:name doi
    86 schema:value 10.1007/978-3-642-41509-8_3
    87 rdf:type schema:PropertyValue
    88 Nf72511e3559e4f3c9fd5ca94f22b0c61 schema:affiliation https://www.grid.ac/institutes/grid.264762.3
    89 schema:familyName Lee
    90 schema:givenName Suk Jin
    91 rdf:type schema:Person
    92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Information and Computing Sciences
    94 rdf:type schema:DefinedTerm
    95 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Artificial Intelligence and Image Processing
    97 rdf:type schema:DefinedTerm
    98 sg:pub.10.1007/s00453-004-1127-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012019308
    99 https://doi.org/10.1007/s00453-004-1127-9
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/s11222-007-9033-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1008067612
    102 https://doi.org/10.1007/s11222-007-9033-z
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1023/a:1013635829250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023538731
    105 https://doi.org/10.1023/a:1013635829250
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1023/a:1013844811137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004228510
    108 https://doi.org/10.1023/a:1013844811137
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1023/b:mach.0000033113.59016.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022292789
    111 https://doi.org/10.1023/b:mach.0000033113.59016.96
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/s0167-8655(97)00121-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017508433
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/s0360-3016(00)00625-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041523257
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1109/41.499810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061169131
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1109/7.220926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061214333
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1109/7.640267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061215183
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1109/7.826329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061215554
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1109/7.937457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061215722
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1109/78.771032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061230646
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1109/9.1299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061242943
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1109/9.67304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061245613
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1109/9.774106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061246039
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1109/tac.2005.854581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061475985
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1109/taes.2005.1561886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061484745
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/taes.2008.4560196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061485079
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/tie.2008.2007014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061623288
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/tii.2005.857617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061631722
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/tii.2009.2020566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061631833
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1109/tii.2009.2034514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061631865
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/tii.2010.2089990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061631931
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1109/tkde.2006.183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661570
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1109/tmi.2010.2044045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695540
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1109/tnn.2002.1000144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716428
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1109/tpami.2002.1017616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742389
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1109/tpami.2005.162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742823
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1109/tpami.2006.168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743008
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1109/tpami.2006.247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743073
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1109/tpami.2008.215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743558
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1109/tro.2008.2004488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061784862
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1109/tsp.2005.857061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061799776
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1109/tsp.2007.900167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061800783
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1118/1.3480504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027238451
    174 rdf:type schema:CreativeWork
    175 https://www.grid.ac/institutes/grid.224260.0 schema:alternateName Virginia Commonwealth University
    176 schema:name Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, USA
    177 rdf:type schema:Organization
    178 https://www.grid.ac/institutes/grid.264762.3 schema:alternateName Texas A&M University – Texarkana
    179 schema:name Department of Computer Science, Texas A&M University—Texarkana, Texarkana, TX, USA
    180 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...