A Framework for Developing Manufacturing Service Capability Information Model View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2013

AUTHORS

Yunsu Lee , Yun Peng

ABSTRACT

Rapid formation and optimization of manufacturing production networks (MPN) requires manufacturing service capability (MSC) information of each party be accessible, understandable, and processible by all others in the network. However, at the present time, MSC information is typically encoded according to local proprietary models, and thus is not interoperable. Related existing works are primarily for integration in “isolated automation” of pair-wise or small size networks and thus are not adequate to deal with the high degree of diversity, dynamics, and scales typical for a MPN. In this paper, we propose a model development framework which enables to evolve a reference model for MSC information based on the inputs from proprietary models. The developed reference model can serve as a unified semantic basis supporting interoperability of MSC information across these local proprietary models. Methodology for resolving structural and other semantic conflicts between deferent models in model development is also presented. More... »

PAGES

325-333

Book

TITLE

Advances in Production Management Systems. Sustainable Production and Service Supply Chains

ISBN

978-3-642-41265-3
978-3-642-41266-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-41266-0_40

DOI

http://dx.doi.org/10.1007/978-3-642-41266-0_40

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006511032


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, 21250, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, 21250, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Yunsu", 
        "id": "sg:person.015343450007.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015343450007.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, 21250, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, 21250, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Yun", 
        "id": "sg:person.01136741416.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136741416.72"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Rapid formation and optimization of manufacturing production networks (MPN) requires manufacturing service capability (MSC) information of each party be accessible, understandable, and processible by all others in the network. However, at the present time, MSC information is typically encoded according to local proprietary models, and thus is not interoperable. Related existing works are primarily for integration in \u201cisolated automation\u201d of pair-wise or small size networks and thus are not adequate to deal with the high degree of diversity, dynamics, and scales typical for a MPN. In this paper, we propose a model development framework which enables to evolve a reference model for MSC information based on the inputs from proprietary models. The developed reference model can serve as a unified semantic basis supporting interoperability of MSC information across these local proprietary models. Methodology for resolving structural and other semantic conflicts between deferent models in model development is also presented.", 
    "editor": [
      {
        "familyName": "Prabhu", 
        "givenName": "Vittal", 
        "type": "Person"
      }, 
      {
        "familyName": "Taisch", 
        "givenName": "Marco", 
        "type": "Person"
      }, 
      {
        "familyName": "Kiritsis", 
        "givenName": "Dimitris", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-41266-0_40", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-41265-3", 
        "978-3-642-41266-0"
      ], 
      "name": "Advances in Production Management Systems. Sustainable Production and Service Supply Chains", 
      "type": "Book"
    }, 
    "keywords": [
      "MSC information", 
      "reference model", 
      "proprietary model", 
      "model development framework", 
      "model development", 
      "capability information", 
      "rapid formation", 
      "information model", 
      "model", 
      "small size networks", 
      "optimization", 
      "automation", 
      "network", 
      "high degree", 
      "methodology", 
      "size networks", 
      "input", 
      "work", 
      "Existing works", 
      "integration", 
      "dynamics", 
      "formation", 
      "present time", 
      "framework", 
      "time", 
      "information", 
      "scale", 
      "degree", 
      "interoperability", 
      "production networks", 
      "development framework", 
      "development", 
      "basis", 
      "semantic conflicts", 
      "semantic basis", 
      "MPN", 
      "parties", 
      "diversity", 
      "conflict", 
      "paper"
    ], 
    "name": "A Framework for Developing Manufacturing Service Capability Information Model", 
    "pagination": "325-333", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006511032"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-41266-0_40"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-41266-0_40", 
      "https://app.dimensions.ai/details/publication/pub.1006511032"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_311.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-41266-0_40"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41266-0_40'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41266-0_40'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41266-0_40'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41266-0_40'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      23 PREDICATES      66 URIs      59 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-41266-0_40 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N6511ca2b3b1e461893341725356b2e59
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description Rapid formation and optimization of manufacturing production networks (MPN) requires manufacturing service capability (MSC) information of each party be accessible, understandable, and processible by all others in the network. However, at the present time, MSC information is typically encoded according to local proprietary models, and thus is not interoperable. Related existing works are primarily for integration in “isolated automation” of pair-wise or small size networks and thus are not adequate to deal with the high degree of diversity, dynamics, and scales typical for a MPN. In this paper, we propose a model development framework which enables to evolve a reference model for MSC information based on the inputs from proprietary models. The developed reference model can serve as a unified semantic basis supporting interoperability of MSC information across these local proprietary models. Methodology for resolving structural and other semantic conflicts between deferent models in model development is also presented.
7 schema:editor N39e4be1fa9724411979e1e056a82eb67
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N2b6e472ec8a440e59d39a96e146bbb8e
12 schema:keywords Existing works
13 MPN
14 MSC information
15 automation
16 basis
17 capability information
18 conflict
19 degree
20 development
21 development framework
22 diversity
23 dynamics
24 formation
25 framework
26 high degree
27 information
28 information model
29 input
30 integration
31 interoperability
32 methodology
33 model
34 model development
35 model development framework
36 network
37 optimization
38 paper
39 parties
40 present time
41 production networks
42 proprietary model
43 rapid formation
44 reference model
45 scale
46 semantic basis
47 semantic conflicts
48 size networks
49 small size networks
50 time
51 work
52 schema:name A Framework for Developing Manufacturing Service Capability Information Model
53 schema:pagination 325-333
54 schema:productId N200b960c20dc4a1f90964eeb76215f40
55 N67a3febc1faf420cbd585815a34fac45
56 schema:publisher N01b3e3129b754f089419f5297ff62224
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006511032
58 https://doi.org/10.1007/978-3-642-41266-0_40
59 schema:sdDatePublished 2022-06-01T22:32
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Neeb8c0db46314c77aac1417752863f24
62 schema:url https://doi.org/10.1007/978-3-642-41266-0_40
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N01b3e3129b754f089419f5297ff62224 schema:name Springer Nature
67 rdf:type schema:Organisation
68 N0dd3e18972904b828205c179c5466292 schema:familyName Kiritsis
69 schema:givenName Dimitris
70 rdf:type schema:Person
71 N1f38f817711c4987902f5a0891ff79e9 rdf:first N8c449c08dd73408a840752c42501b70e
72 rdf:rest Neac9531302294f32ba56b4936bf1cd40
73 N200b960c20dc4a1f90964eeb76215f40 schema:name doi
74 schema:value 10.1007/978-3-642-41266-0_40
75 rdf:type schema:PropertyValue
76 N2b6e472ec8a440e59d39a96e146bbb8e schema:isbn 978-3-642-41265-3
77 978-3-642-41266-0
78 schema:name Advances in Production Management Systems. Sustainable Production and Service Supply Chains
79 rdf:type schema:Book
80 N39e4be1fa9724411979e1e056a82eb67 rdf:first N76f5ff913e0543ac86e74941814eade8
81 rdf:rest N1f38f817711c4987902f5a0891ff79e9
82 N6511ca2b3b1e461893341725356b2e59 rdf:first sg:person.015343450007.04
83 rdf:rest Nd2fe9f3f6e964a09ad7e48a0941d21b2
84 N67a3febc1faf420cbd585815a34fac45 schema:name dimensions_id
85 schema:value pub.1006511032
86 rdf:type schema:PropertyValue
87 N76f5ff913e0543ac86e74941814eade8 schema:familyName Prabhu
88 schema:givenName Vittal
89 rdf:type schema:Person
90 N8c449c08dd73408a840752c42501b70e schema:familyName Taisch
91 schema:givenName Marco
92 rdf:type schema:Person
93 Nd2fe9f3f6e964a09ad7e48a0941d21b2 rdf:first sg:person.01136741416.72
94 rdf:rest rdf:nil
95 Neac9531302294f32ba56b4936bf1cd40 rdf:first N0dd3e18972904b828205c179c5466292
96 rdf:rest rdf:nil
97 Neeb8c0db46314c77aac1417752863f24 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
100 schema:name Information and Computing Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
103 schema:name Information Systems
104 rdf:type schema:DefinedTerm
105 sg:person.01136741416.72 schema:affiliation grid-institutes:None
106 schema:familyName Peng
107 schema:givenName Yun
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136741416.72
109 rdf:type schema:Person
110 sg:person.015343450007.04 schema:affiliation grid-institutes:None
111 schema:familyName Lee
112 schema:givenName Yunsu
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015343450007.04
114 rdf:type schema:Person
115 grid-institutes:None schema:alternateName Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, 21250, Baltimore, MD, USA
116 schema:name Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, 21250, Baltimore, MD, USA
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...