Evaluation of Different Metrics for Shape Based Image Retrieval Using a New Contour Points Descriptor View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

María Teresa García-Ordás , Enrique Alegre , Oscar García-Olalla , Diego García-Ordás

ABSTRACT

In this paper, an image shape retrieval method was evaluated using Euclidean, Intersect, Hamming and Cityblock distances and different kinds of k-nearest neighbours classifiers such as the original kNN, mean distance kNN and Weighted kNN. Shapes were described using a new method based on the description of the contour points, CPDH36R, obtaining better results than with the original CPDH shape descriptor. The efficiency in the retrieval was tested using Kimia99, Kimia25, MPEG7 and MPEG2 datasets obtaining an 84% of success rate in Kimia25, 94% in Kimia99, 91% in MPEG2 and 82% in MPEG7 datasets using our CPDH36R method, cityblock distance and original kNN against the 68%, 91%, 74% and 59% respectively obtained using the original CPDH. The greatest difference between the original method and our proposal can be seen clearly using MPEG2 dataset. Another advantage of our retrieval method, apart from the success rate, is the computational cost which is clearly better than the one achieved with the original Earth Mover Distance classifier used in the CPDH original method. More... »

PAGES

141-150

Book

TITLE

Similarity Search and Applications

ISBN

978-3-642-41061-1
978-3-642-41062-8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-41062-8_14

DOI

http://dx.doi.org/10.1007/978-3-642-41062-8_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000179854


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Le\u00f3n, Le\u00f3n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "University of Le\u00f3n, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda-Ord\u00e1s", 
        "givenName": "Mar\u00eda Teresa", 
        "id": "sg:person.014015622120.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014015622120.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Le\u00f3n, Le\u00f3n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "University of Le\u00f3n, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alegre", 
        "givenName": "Enrique", 
        "id": "sg:person.016266057305.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266057305.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Le\u00f3n, Le\u00f3n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "University of Le\u00f3n, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda-Olalla", 
        "givenName": "Oscar", 
        "id": "sg:person.015450152607.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015450152607.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Le\u00f3n, Le\u00f3n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "University of Le\u00f3n, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda-Ord\u00e1s", 
        "givenName": "Diego", 
        "id": "sg:person.013451236372.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013451236372.63"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "In this paper, an image shape retrieval method was evaluated using Euclidean, Intersect, Hamming and Cityblock distances and different kinds of k-nearest neighbours classifiers such as the original kNN, mean distance kNN and Weighted kNN. Shapes were described using a new method based on the description of the contour points, CPDH36R, obtaining better results than with the original CPDH shape descriptor. The efficiency in the retrieval was tested using Kimia99, Kimia25, MPEG7 and MPEG2 datasets obtaining an 84% of success rate in Kimia25, 94% in Kimia99, 91% in MPEG2 and 82% in MPEG7 datasets using our CPDH36R method, cityblock distance and original kNN against the 68%, 91%, 74% and 59% respectively obtained using the original CPDH. The greatest difference between the original method and our proposal can be seen clearly using MPEG2 dataset. Another advantage of our retrieval method, apart from the success rate, is the computational cost which is clearly better than the one achieved with the original Earth Mover Distance classifier used in the CPDH original method.", 
    "editor": [
      {
        "familyName": "Brisaboa", 
        "givenName": "Nieves", 
        "type": "Person"
      }, 
      {
        "familyName": "Pedreira", 
        "givenName": "Oscar", 
        "type": "Person"
      }, 
      {
        "familyName": "Zezula", 
        "givenName": "Pavel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-41062-8_14", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-41061-1", 
        "978-3-642-41062-8"
      ], 
      "name": "Similarity Search and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "retrieval method", 
      "cityblock distance", 
      "original KNN", 
      "Shape Based Image Retrieval", 
      "Based Image Retrieval", 
      "shape retrieval method", 
      "nearest neighbour classifier", 
      "neighbour classifier", 
      "KNN", 
      "Weighted KNN", 
      "contour points", 
      "shape descriptors", 
      "datasets", 
      "MPEG7 dataset", 
      "original method", 
      "computational cost", 
      "distance classifier", 
      "different metrics", 
      "image retrieval", 
      "point descriptors", 
      "Hamming", 
      "different kinds", 
      "classifier", 
      "new method", 
      "good results", 
      "descriptors", 
      "retrieval", 
      "MPEG7", 
      "success rate", 
      "MPEG2", 
      "metrics", 
      "method", 
      "Euclidean", 
      "distance", 
      "kind", 
      "description", 
      "point", 
      "efficiency", 
      "proposal", 
      "advantages", 
      "cost", 
      "one", 
      "evaluation", 
      "intersect", 
      "shape", 
      "results", 
      "rate", 
      "great differences", 
      "differences", 
      "paper", 
      "image shape retrieval method", 
      "mean distance kNN", 
      "distance kNN", 
      "CPDH36R", 
      "original CPDH shape descriptor", 
      "CPDH shape descriptor", 
      "Kimia99", 
      "Kimia25", 
      "MPEG2 datasets", 
      "CPDH36R method", 
      "original CPDH", 
      "CPDH", 
      "original Earth Mover Distance classifier", 
      "Earth Mover Distance classifier", 
      "Mover Distance classifier", 
      "CPDH original method", 
      "New Contour Points Descriptor", 
      "Contour Points Descriptor"
    ], 
    "name": "Evaluation of Different Metrics for Shape Based Image Retrieval Using a New Contour Points Descriptor", 
    "pagination": "141-150", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000179854"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-41062-8_14"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-41062-8_14", 
      "https://app.dimensions.ai/details/publication/pub.1000179854"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_445.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-41062-8_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41062-8_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41062-8_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41062-8_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-41062-8_14'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      23 PREDICATES      94 URIs      87 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-41062-8_14 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0e311239b5d54f64bec2cc221cc65b76
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description In this paper, an image shape retrieval method was evaluated using Euclidean, Intersect, Hamming and Cityblock distances and different kinds of k-nearest neighbours classifiers such as the original kNN, mean distance kNN and Weighted kNN. Shapes were described using a new method based on the description of the contour points, CPDH36R, obtaining better results than with the original CPDH shape descriptor. The efficiency in the retrieval was tested using Kimia99, Kimia25, MPEG7 and MPEG2 datasets obtaining an 84% of success rate in Kimia25, 94% in Kimia99, 91% in MPEG2 and 82% in MPEG7 datasets using our CPDH36R method, cityblock distance and original kNN against the 68%, 91%, 74% and 59% respectively obtained using the original CPDH. The greatest difference between the original method and our proposal can be seen clearly using MPEG2 dataset. Another advantage of our retrieval method, apart from the success rate, is the computational cost which is clearly better than the one achieved with the original Earth Mover Distance classifier used in the CPDH original method.
7 schema:editor Nad8c66cf734c43d99f33d426820b8d3f
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N11a12345877c43b89ae9610117bd4a2d
12 schema:keywords Based Image Retrieval
13 CPDH
14 CPDH original method
15 CPDH shape descriptor
16 CPDH36R
17 CPDH36R method
18 Contour Points Descriptor
19 Earth Mover Distance classifier
20 Euclidean
21 Hamming
22 KNN
23 Kimia25
24 Kimia99
25 MPEG2
26 MPEG2 datasets
27 MPEG7
28 MPEG7 dataset
29 Mover Distance classifier
30 New Contour Points Descriptor
31 Shape Based Image Retrieval
32 Weighted KNN
33 advantages
34 cityblock distance
35 classifier
36 computational cost
37 contour points
38 cost
39 datasets
40 description
41 descriptors
42 differences
43 different kinds
44 different metrics
45 distance
46 distance classifier
47 distance kNN
48 efficiency
49 evaluation
50 good results
51 great differences
52 image retrieval
53 image shape retrieval method
54 intersect
55 kind
56 mean distance kNN
57 method
58 metrics
59 nearest neighbour classifier
60 neighbour classifier
61 new method
62 one
63 original CPDH
64 original CPDH shape descriptor
65 original Earth Mover Distance classifier
66 original KNN
67 original method
68 paper
69 point
70 point descriptors
71 proposal
72 rate
73 results
74 retrieval
75 retrieval method
76 shape
77 shape descriptors
78 shape retrieval method
79 success rate
80 schema:name Evaluation of Different Metrics for Shape Based Image Retrieval Using a New Contour Points Descriptor
81 schema:pagination 141-150
82 schema:productId N4375a7a6bd4d4b83b6a0d7a23deae727
83 Nbdb1878b247e4561b62f992b5d89d906
84 schema:publisher N5e8b206249b84be3bc5d203cc8e68469
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000179854
86 https://doi.org/10.1007/978-3-642-41062-8_14
87 schema:sdDatePublished 2021-12-01T20:11
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher N0ff7a216126e4df89a431bd95ea2e0cd
90 schema:url https://doi.org/10.1007/978-3-642-41062-8_14
91 sgo:license sg:explorer/license/
92 sgo:sdDataset chapters
93 rdf:type schema:Chapter
94 N0e311239b5d54f64bec2cc221cc65b76 rdf:first sg:person.014015622120.33
95 rdf:rest N1037a0a6cb1c42218e66709645ac5779
96 N0ff7a216126e4df89a431bd95ea2e0cd schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N1037a0a6cb1c42218e66709645ac5779 rdf:first sg:person.016266057305.75
99 rdf:rest N5fe34bc8450c4778999e5e4c17549d2e
100 N11a12345877c43b89ae9610117bd4a2d schema:isbn 978-3-642-41061-1
101 978-3-642-41062-8
102 schema:name Similarity Search and Applications
103 rdf:type schema:Book
104 N4375a7a6bd4d4b83b6a0d7a23deae727 schema:name doi
105 schema:value 10.1007/978-3-642-41062-8_14
106 rdf:type schema:PropertyValue
107 N5e8b206249b84be3bc5d203cc8e68469 schema:name Springer Nature
108 rdf:type schema:Organisation
109 N5fe34bc8450c4778999e5e4c17549d2e rdf:first sg:person.015450152607.60
110 rdf:rest Nb5485ec6c9e54b2bb768ef98306af1ef
111 N8b8b8b5b55844e1c9e85afbd61e9963b schema:familyName Zezula
112 schema:givenName Pavel
113 rdf:type schema:Person
114 Nad8c66cf734c43d99f33d426820b8d3f rdf:first Ndc8c478da63c451e8e102207918b03e2
115 rdf:rest Nb9fa0743368f4150825df8d48ec427b7
116 Nb5485ec6c9e54b2bb768ef98306af1ef rdf:first sg:person.013451236372.63
117 rdf:rest rdf:nil
118 Nb9fa0743368f4150825df8d48ec427b7 rdf:first Nefa81bd79385469fab92fbf58edefffc
119 rdf:rest Nf1b880dbdcda43d2a737e46a402f4d09
120 Nbdb1878b247e4561b62f992b5d89d906 schema:name dimensions_id
121 schema:value pub.1000179854
122 rdf:type schema:PropertyValue
123 Ndc8c478da63c451e8e102207918b03e2 schema:familyName Brisaboa
124 schema:givenName Nieves
125 rdf:type schema:Person
126 Nefa81bd79385469fab92fbf58edefffc schema:familyName Pedreira
127 schema:givenName Oscar
128 rdf:type schema:Person
129 Nf1b880dbdcda43d2a737e46a402f4d09 rdf:first N8b8b8b5b55844e1c9e85afbd61e9963b
130 rdf:rest rdf:nil
131 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
132 schema:name Information and Computing Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
135 schema:name Artificial Intelligence and Image Processing
136 rdf:type schema:DefinedTerm
137 sg:person.013451236372.63 schema:affiliation grid-institutes:grid.4807.b
138 schema:familyName García-Ordás
139 schema:givenName Diego
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013451236372.63
141 rdf:type schema:Person
142 sg:person.014015622120.33 schema:affiliation grid-institutes:grid.4807.b
143 schema:familyName García-Ordás
144 schema:givenName María Teresa
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014015622120.33
146 rdf:type schema:Person
147 sg:person.015450152607.60 schema:affiliation grid-institutes:grid.4807.b
148 schema:familyName García-Olalla
149 schema:givenName Oscar
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015450152607.60
151 rdf:type schema:Person
152 sg:person.016266057305.75 schema:affiliation grid-institutes:grid.4807.b
153 schema:familyName Alegre
154 schema:givenName Enrique
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266057305.75
156 rdf:type schema:Person
157 grid-institutes:grid.4807.b schema:alternateName University of León, León, Spain
158 schema:name University of León, León, Spain
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...