2013
AUTHORSIrene Díaz , Luis J. Rodríguez-Mũniz , Luigi Troiano
ABSTRACTData mining techniques represent a useful tool to cope with privacy problems. In this work an association rule mining algorithm adapted to the privacy context is developed. The algorithm produces association rules with a certain structure (the premise set is a subset of the public features of a released table while the consequent is the feature to protect). These rules are then used to reveal and explain relationships from data affected by some kind of anonymization process and thus, to detect threats. More... »
PAGES232-241
Hybrid Artificial Intelligent Systems
ISBN
978-3-642-40845-8
978-3-642-40846-5
http://scigraph.springernature.com/pub.10.1007/978-3-642-40846-5_24
DOIhttp://dx.doi.org/10.1007/978-3-642-40846-5_24
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1005034921
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Computer Science Department, University of Oviedo, Spain"
],
"type": "Organization"
},
"familyName": "D\u00edaz",
"givenName": "Irene",
"id": "sg:person.010242453671.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010242453671.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Department of Statistics and O.R., University of Oviedo, Spain"
],
"type": "Organization"
},
"familyName": "Rodr\u00edguez-M\u0169niz",
"givenName": "Luis J.",
"id": "sg:person.010256741453.82",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010256741453.82"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Sannio",
"id": "https://www.grid.ac/institutes/grid.47422.37",
"name": [
"Department of Engineering, University of Sannio, Italy"
],
"type": "Organization"
},
"familyName": "Troiano",
"givenName": "Luigi",
"id": "sg:person.013774110653.81",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013774110653.81"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1145/1244002.1244091",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007863092"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-387-70992-5_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013309695",
"https://doi.org/10.1007/978-0-387-70992-5_5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eswa.2010.09.130",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021929715"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0020-0255(03)00064-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023562060"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0020-0255(03)00064-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023562060"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4613-1685-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040142844",
"https://doi.org/10.1007/978-1-4613-1685-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4613-1685-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040142844",
"https://doi.org/10.1007/978-1-4613-1685-5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1386118.1386123",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047128474"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-14055-6_47",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050282605",
"https://doi.org/10.1007/978-3-642-14055-6_47"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-14055-6_47",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050282605",
"https://doi.org/10.1007/978-3-642-14055-6_47"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/jigpal/jzr014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059798010"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/69.971193",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061213975"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1142/s0218488502001648",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062976751"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icebe.2009.34",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093291365"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icde.2007.367856",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093296979"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icdm.2005.37",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094621723"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icde.2006.1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095475020"
],
"type": "CreativeWork"
}
],
"datePublished": "2013",
"datePublishedReg": "2013-01-01",
"description": "Data mining techniques represent a useful tool to cope with privacy problems. In this work an association rule mining algorithm adapted to the privacy context is developed. The algorithm produces association rules with a certain structure (the premise set is a subset of the public features of a released table while the consequent is the feature to protect). These rules are then used to reveal and explain relationships from data affected by some kind of anonymization process and thus, to detect threats.",
"editor": [
{
"familyName": "Pan",
"givenName": "Jeng-Shyang",
"type": "Person"
},
{
"familyName": "Polycarpou",
"givenName": "Marios M.",
"type": "Person"
},
{
"familyName": "Wo\u017aniak",
"givenName": "Micha\u0142",
"type": "Person"
},
{
"familyName": "de Carvalho",
"givenName": "Andr\u00e9 C. P. L. F.",
"type": "Person"
},
{
"familyName": "Quinti\u00e1n",
"givenName": "H\u00e9ctor",
"type": "Person"
},
{
"familyName": "Corchado",
"givenName": "Emilio",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-40846-5_24",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-40845-8",
"978-3-642-40846-5"
],
"name": "Hybrid Artificial Intelligent Systems",
"type": "Book"
},
"name": "On Mining Sensitive Rules to Identify Privacy Threats",
"pagination": "232-241",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-40846-5_24"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"17fd9ade83c7866536bdc51b7602fa968df0642040b7c4a807c400dcb6355a04"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1005034921"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-40846-5_24",
"https://app.dimensions.ai/details/publication/pub.1005034921"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T20:59",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000246.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-642-40846-5_24"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40846-5_24'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40846-5_24'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40846-5_24'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40846-5_24'
This table displays all metadata directly associated to this object as RDF triples.
153 TRIPLES
23 PREDICATES
41 URIs
20 LITERALS
8 BLANK NODES