Learning the Manifold of Quality Ultrasound Acquisition View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Noha El-Zehiry , Michelle Yan , Sara Good , Tong Fang , S. Kevin Zhou , Leo Grady

ABSTRACT

Ultrasound acquisition is a challenging task that requires simultaneous adjustment of several acquisition parameters (the depth, the focus, the frequency and its operation mode). If the acquisition parameters are not properly chosen, the resulting image will have a poor quality and will degrade the patient diagnosis and treatment workflow. Several hardware-based systems for autotuning the acquisition parameters have been previously proposed, but these solutions were largely abandoned because they failed to properly account for tissue inhomogeneity and other patient-specific characteristics. Consequently, in routine practice the clinician either uses population-based parameter presets or manually adjusts the acquisition parameters for each patient during the scan. In this paper, we revisit the problem of autotuning the acquisition parameters by taking a completely novel approach and producing a solution based on image analytics. Our solution is inspired by the autofocus capability of conventional digital cameras, but is significantly more challenging because the number of acquisition parameters is large and the determination of “good quality” images is more difficult to assess. Surprisingly, we show that the set of acquisition parameters which produce images that are favored by clinicians comprise a 1D manifold, allowing for a real-time optimization to maximize image quality. We demonstrate our method for acquisition parameter autotuning on several live patients, showing that our system can start with a poor initial set of parameters and automatically optimize the parameters to produce high quality images. More... »

PAGES

122-130

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-40811-3_16

DOI

http://dx.doi.org/10.1007/978-3-642-40811-3_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049687045

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24505657


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Corporate Technology, Siemens Corporation, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Corporate Technology, Siemens Corporation, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "El-Zehiry", 
        "givenName": "Noha", 
        "id": "sg:person.07657676251.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657676251.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Corporate Technology, Siemens Corporation, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Corporate Technology, Siemens Corporation, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Michelle", 
        "id": "sg:person.010661631022.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010661631022.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Healthcare, USA", 
          "id": "http://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Siemens Healthcare, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Good", 
        "givenName": "Sara", 
        "id": "sg:person.0614045271.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614045271.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Corporate Technology, Siemens Corporation, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Corporate Technology, Siemens Corporation, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "Tong", 
        "id": "sg:person.01065677302.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065677302.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Corporate Technology, Siemens Corporation, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Corporate Technology, Siemens Corporation, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "S. Kevin", 
        "id": "sg:person.01372425362.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372425362.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Corporate Technology, Siemens Corporation, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Corporate Technology, Siemens Corporation, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grady", 
        "givenName": "Leo", 
        "id": "sg:person.0617232252.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617232252.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Ultrasound acquisition is a challenging task that requires simultaneous adjustment of several acquisition parameters (the depth, the focus, the frequency and its operation mode). If the acquisition parameters are not properly chosen, the resulting image will have a poor quality and will degrade the patient diagnosis and treatment workflow. Several hardware-based systems for autotuning the acquisition parameters have been previously proposed, but these solutions were largely abandoned because they failed to properly account for tissue inhomogeneity and other patient-specific characteristics. Consequently, in routine practice the clinician either uses population-based parameter presets or manually adjusts the acquisition parameters for each patient during the scan. In this paper, we revisit the problem of autotuning the acquisition parameters by taking a completely novel approach and producing a solution based on image analytics. Our solution is inspired by the autofocus capability of conventional digital cameras, but is significantly more challenging because the number of acquisition parameters is large and the determination of \u201cgood quality\u201d images is more difficult to assess. Surprisingly, we show that the set of acquisition parameters which produce images that are favored by clinicians comprise a 1D manifold, allowing for a real-time optimization to maximize image quality. We demonstrate our method for acquisition parameter autotuning on several live patients, showing that our system can start with a poor initial set of parameters and automatically optimize the parameters to produce high quality images.", 
    "editor": [
      {
        "familyName": "Salinesi", 
        "givenName": "Camille", 
        "type": "Person"
      }, 
      {
        "familyName": "Norrie", 
        "givenName": "Moira C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Pastor", 
        "givenName": "\u00d3scar", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-40811-3_16", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-40810-6", 
        "978-3-642-40811-3"
      ], 
      "name": "Advanced Information Systems Engineering", 
      "type": "Book"
    }, 
    "keywords": [
      "hardware-based systems", 
      "ultrasound acquisition", 
      "real-time optimization", 
      "conventional digital camera", 
      "high quality images", 
      "image analytics", 
      "acquisition parameters", 
      "challenging task", 
      "quality images", 
      "digital camera", 
      "image quality", 
      "initial set", 
      "novel approach", 
      "images", 
      "treatment workflow", 
      "analytics", 
      "good quality", 
      "workflow", 
      "set", 
      "camera", 
      "patient-specific characteristics", 
      "task", 
      "system", 
      "acquisition", 
      "quality", 
      "solution", 
      "capability", 
      "optimization", 
      "preset", 
      "tissue inhomogeneities", 
      "live patients", 
      "patient diagnosis", 
      "parameters", 
      "poor quality", 
      "manifold", 
      "method", 
      "inhomogeneity", 
      "number", 
      "simultaneous adjustment", 
      "characteristics", 
      "practice", 
      "problem", 
      "determination", 
      "scans", 
      "approach", 
      "adjustment", 
      "clinicians", 
      "diagnosis", 
      "routine practice", 
      "patients", 
      "paper", 
      "population-based parameter presets", 
      "parameter presets", 
      "autofocus capability", 
      "poor initial set", 
      "Quality Ultrasound Acquisition"
    ], 
    "name": "Learning the Manifold of Quality Ultrasound Acquisition", 
    "pagination": "122-130", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049687045"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-40811-3_16"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24505657"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-40811-3_16", 
      "https://app.dimensions.ai/details/publication/pub.1049687045"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_454.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-40811-3_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40811-3_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40811-3_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40811-3_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40811-3_16'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      23 PREDICATES      93 URIs      86 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-40811-3_16 schema:about N14a8997d0f7c42bfa6760989b86f312f
2 N27bf7a331eef421899bc81c12d346a75
3 N4c8b9b63ff764f6692b71eb9a1a4fa83
4 N589dbdff9b4046bbab45093c02d17898
5 N67858262f9cf4d4fa9a2824ca25ffcb9
6 N6a6563f89397432eaf0f2a3a50771134
7 N6d5254b177164ec199917b936ec9a02b
8 N9ab379a0d27a42688e87524e93b066af
9 Na19c39bbe27e4b84a7e276b03840f4be
10 Na4267f9f277748f4bf7c2b9d418be99c
11 anzsrc-for:08
12 anzsrc-for:0801
13 schema:author N4bc78914cde34cd8a1a25f1d81748dba
14 schema:datePublished 2013
15 schema:datePublishedReg 2013-01-01
16 schema:description Ultrasound acquisition is a challenging task that requires simultaneous adjustment of several acquisition parameters (the depth, the focus, the frequency and its operation mode). If the acquisition parameters are not properly chosen, the resulting image will have a poor quality and will degrade the patient diagnosis and treatment workflow. Several hardware-based systems for autotuning the acquisition parameters have been previously proposed, but these solutions were largely abandoned because they failed to properly account for tissue inhomogeneity and other patient-specific characteristics. Consequently, in routine practice the clinician either uses population-based parameter presets or manually adjusts the acquisition parameters for each patient during the scan. In this paper, we revisit the problem of autotuning the acquisition parameters by taking a completely novel approach and producing a solution based on image analytics. Our solution is inspired by the autofocus capability of conventional digital cameras, but is significantly more challenging because the number of acquisition parameters is large and the determination of “good quality” images is more difficult to assess. Surprisingly, we show that the set of acquisition parameters which produce images that are favored by clinicians comprise a 1D manifold, allowing for a real-time optimization to maximize image quality. We demonstrate our method for acquisition parameter autotuning on several live patients, showing that our system can start with a poor initial set of parameters and automatically optimize the parameters to produce high quality images.
17 schema:editor Nb011e151d76348a19a83fdfcbbe5a028
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Nd3cd5d2ef725477bb3465584404db166
22 schema:keywords Quality Ultrasound Acquisition
23 acquisition
24 acquisition parameters
25 adjustment
26 analytics
27 approach
28 autofocus capability
29 camera
30 capability
31 challenging task
32 characteristics
33 clinicians
34 conventional digital camera
35 determination
36 diagnosis
37 digital camera
38 good quality
39 hardware-based systems
40 high quality images
41 image analytics
42 image quality
43 images
44 inhomogeneity
45 initial set
46 live patients
47 manifold
48 method
49 novel approach
50 number
51 optimization
52 paper
53 parameter presets
54 parameters
55 patient diagnosis
56 patient-specific characteristics
57 patients
58 poor initial set
59 poor quality
60 population-based parameter presets
61 practice
62 preset
63 problem
64 quality
65 quality images
66 real-time optimization
67 routine practice
68 scans
69 set
70 simultaneous adjustment
71 solution
72 system
73 task
74 tissue inhomogeneities
75 treatment workflow
76 ultrasound acquisition
77 workflow
78 schema:name Learning the Manifold of Quality Ultrasound Acquisition
79 schema:pagination 122-130
80 schema:productId N240d35999cb4416cb30abdc521d84e54
81 N6255b41c35f0456bb10b7e0a9e25450e
82 Na62b7766999b46f481c25b3fb9438732
83 schema:publisher Na7e4ac55d1d24355aef8a58599494956
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049687045
85 https://doi.org/10.1007/978-3-642-40811-3_16
86 schema:sdDatePublished 2022-01-01T19:26
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N87824ed0070548e989a6dfa8e52b220d
89 schema:url https://doi.org/10.1007/978-3-642-40811-3_16
90 sgo:license sg:explorer/license/
91 sgo:sdDataset chapters
92 rdf:type schema:Chapter
93 N14a8997d0f7c42bfa6760989b86f312f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Reproducibility of Results
95 rdf:type schema:DefinedTerm
96 N19cbf18df1a2482eac9dbc1f0aca5b5a rdf:first sg:person.0614045271.61
97 rdf:rest Nd2b6aeb0012049ecafda5b3441caef08
98 N1e785cece6ec409a8cff1488e0a53e25 rdf:first N696c353ea06849f3aed588f62ca758c5
99 rdf:rest rdf:nil
100 N240d35999cb4416cb30abdc521d84e54 schema:name pubmed_id
101 schema:value 24505657
102 rdf:type schema:PropertyValue
103 N26f2435515874f598530012f86b23052 schema:familyName Norrie
104 schema:givenName Moira C.
105 rdf:type schema:Person
106 N27bf7a331eef421899bc81c12d346a75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Ultrasonography
108 rdf:type schema:DefinedTerm
109 N2e8e8d4bccce4af69eccf9bb0e53905d rdf:first sg:person.010661631022.08
110 rdf:rest N19cbf18df1a2482eac9dbc1f0aca5b5a
111 N43fbd26ba3f342b9b80ad506f7e8c078 rdf:first sg:person.01372425362.30
112 rdf:rest Nce3cea0fd77345abb57428d5a99cd074
113 N4bc78914cde34cd8a1a25f1d81748dba rdf:first sg:person.07657676251.51
114 rdf:rest N2e8e8d4bccce4af69eccf9bb0e53905d
115 N4c8b9b63ff764f6692b71eb9a1a4fa83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Pattern Recognition, Automated
117 rdf:type schema:DefinedTerm
118 N589dbdff9b4046bbab45093c02d17898 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Imaging, Three-Dimensional
120 rdf:type schema:DefinedTerm
121 N6255b41c35f0456bb10b7e0a9e25450e schema:name dimensions_id
122 schema:value pub.1049687045
123 rdf:type schema:PropertyValue
124 N6283e3f0a804434d801a293e927de07b rdf:first N26f2435515874f598530012f86b23052
125 rdf:rest N1e785cece6ec409a8cff1488e0a53e25
126 N67858262f9cf4d4fa9a2824ca25ffcb9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Sensitivity and Specificity
128 rdf:type schema:DefinedTerm
129 N696c353ea06849f3aed588f62ca758c5 schema:familyName Pastor
130 schema:givenName Óscar
131 rdf:type schema:Person
132 N6a6563f89397432eaf0f2a3a50771134 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Image Interpretation, Computer-Assisted
134 rdf:type schema:DefinedTerm
135 N6d5254b177164ec199917b936ec9a02b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Image Enhancement
137 rdf:type schema:DefinedTerm
138 N87824ed0070548e989a6dfa8e52b220d schema:name Springer Nature - SN SciGraph project
139 rdf:type schema:Organization
140 N9323d023ecd9404594ba9bacbd38f157 schema:familyName Salinesi
141 schema:givenName Camille
142 rdf:type schema:Person
143 N9ab379a0d27a42688e87524e93b066af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Algorithms
145 rdf:type schema:DefinedTerm
146 Na19c39bbe27e4b84a7e276b03840f4be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Humans
148 rdf:type schema:DefinedTerm
149 Na4267f9f277748f4bf7c2b9d418be99c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Artificial Intelligence
151 rdf:type schema:DefinedTerm
152 Na62b7766999b46f481c25b3fb9438732 schema:name doi
153 schema:value 10.1007/978-3-642-40811-3_16
154 rdf:type schema:PropertyValue
155 Na7e4ac55d1d24355aef8a58599494956 schema:name Springer Nature
156 rdf:type schema:Organisation
157 Nb011e151d76348a19a83fdfcbbe5a028 rdf:first N9323d023ecd9404594ba9bacbd38f157
158 rdf:rest N6283e3f0a804434d801a293e927de07b
159 Nce3cea0fd77345abb57428d5a99cd074 rdf:first sg:person.0617232252.77
160 rdf:rest rdf:nil
161 Nd2b6aeb0012049ecafda5b3441caef08 rdf:first sg:person.01065677302.14
162 rdf:rest N43fbd26ba3f342b9b80ad506f7e8c078
163 Nd3cd5d2ef725477bb3465584404db166 schema:isbn 978-3-642-40810-6
164 978-3-642-40811-3
165 schema:name Advanced Information Systems Engineering
166 rdf:type schema:Book
167 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
168 schema:name Information and Computing Sciences
169 rdf:type schema:DefinedTerm
170 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
171 schema:name Artificial Intelligence and Image Processing
172 rdf:type schema:DefinedTerm
173 sg:person.01065677302.14 schema:affiliation grid-institutes:grid.419233.e
174 schema:familyName Fang
175 schema:givenName Tong
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065677302.14
177 rdf:type schema:Person
178 sg:person.010661631022.08 schema:affiliation grid-institutes:grid.419233.e
179 schema:familyName Yan
180 schema:givenName Michelle
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010661631022.08
182 rdf:type schema:Person
183 sg:person.01372425362.30 schema:affiliation grid-institutes:grid.419233.e
184 schema:familyName Zhou
185 schema:givenName S. Kevin
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372425362.30
187 rdf:type schema:Person
188 sg:person.0614045271.61 schema:affiliation grid-institutes:grid.415886.6
189 schema:familyName Good
190 schema:givenName Sara
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614045271.61
192 rdf:type schema:Person
193 sg:person.0617232252.77 schema:affiliation grid-institutes:grid.419233.e
194 schema:familyName Grady
195 schema:givenName Leo
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617232252.77
197 rdf:type schema:Person
198 sg:person.07657676251.51 schema:affiliation grid-institutes:grid.419233.e
199 schema:familyName El-Zehiry
200 schema:givenName Noha
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657676251.51
202 rdf:type schema:Person
203 grid-institutes:grid.415886.6 schema:alternateName Siemens Healthcare, USA
204 schema:name Siemens Healthcare, USA
205 rdf:type schema:Organization
206 grid-institutes:grid.419233.e schema:alternateName Corporate Technology, Siemens Corporation, USA
207 schema:name Corporate Technology, Siemens Corporation, USA
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...