Sequential Monte Carlo Tracking for Marginal Artery Segmentation on CT Angiography by Multiple Cue Fusion View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2013

AUTHORS

Shijun Wang , Brandon Peplinski , Le Lu , Weidong Zhang , Jianfei Liu , Zhuoshi Wei , Ronald M. Summers

ABSTRACT

In this work we formulate vessel segmentation on contrast-enhanced CT angiogram images as a Bayesian tracking problem. To obtain posterior probability estimation of vessel location, we employ sequential Monte Carlo tracking and propose a new vessel segmentation method by fusing multiple cues extracted from CT images. These cues include intensity, vesselness, organ detection, and bridge information for poorly enhanced segments from global path minimization. By fusing local and global information for vessel tracking, we achieved high accuracy and robustness, with significantly improved precision compared to a traditional segmentation method (p = 0.0002). Our method was applied to the segmentation of the marginal artery of the colon, a small bore vessel of potential importance for colon segmentation and CT colonography. Experimental results indicate the effectiveness of the proposed method. More... »

PAGES

518-25

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-40763-5_64

DOI

http://dx.doi.org/10.1007/978-3-642-40763-5_64

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013949720

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24579180


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Subtraction Technique", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892-1182, U.S."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Shijun", 
        "id": "sg:person.01274114051.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274114051.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892-1182, U.S."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peplinski", 
        "givenName": "Brandon", 
        "id": "sg:person.01305310336.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305310336.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892-1182, U.S."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Le", 
        "id": "sg:person.01353423536.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892-1182, U.S."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Weidong", 
        "id": "sg:person.010067715257.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010067715257.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892-1182, U.S."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jianfei", 
        "id": "sg:person.01115414602.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115414602.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892-1182, U.S."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Zhuoshi", 
        "id": "sg:person.01064012507.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064012507.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892-1182, U.S."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Summers", 
        "givenName": "Ronald M.", 
        "id": "sg:person.011331054577.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.media.2009.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000004272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.imavis.2006.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006320566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2009.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018744822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:visi.0000016147.97880.cd", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038841744", 
          "https://doi.org/10.1023/b:visi.0000016147.97880.cd"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1581411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049170813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11566465_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050867337", 
          "https://doi.org/10.1007/11566465_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11566465_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050867337", 
          "https://doi.org/10.1007/11566465_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-75759-7_68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052787922", 
          "https://doi.org/10.1007/978-3-540-75759-7_68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-75759-7_68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052787922", 
          "https://doi.org/10.1007/978-3-540-75759-7_68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2007.70727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2006.1624876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094397069"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "In this work we formulate vessel segmentation on contrast-enhanced CT angiogram images as a Bayesian tracking problem. To obtain posterior probability estimation of vessel location, we employ sequential Monte Carlo tracking and propose a new vessel segmentation method by fusing multiple cues extracted from CT images. These cues include intensity, vesselness, organ detection, and bridge information for poorly enhanced segments from global path minimization. By fusing local and global information for vessel tracking, we achieved high accuracy and robustness, with significantly improved precision compared to a traditional segmentation method (p = 0.0002). Our method was applied to the segmentation of the marginal artery of the colon, a small bore vessel of potential importance for colon segmentation and CT colonography. Experimental results indicate the effectiveness of the proposed method.", 
    "editor": [
      {
        "familyName": "Salinesi", 
        "givenName": "Camille", 
        "type": "Person"
      }, 
      {
        "familyName": "Norrie", 
        "givenName": "Moira C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Pastor", 
        "givenName": "\u00d3scar", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-40763-5_64", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4055994", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4055703", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-642-38708-1", 
        "978-3-642-38709-8"
      ], 
      "name": "Advanced Information Systems Engineering", 
      "type": "Book"
    }, 
    "name": "Sequential Monte Carlo Tracking for Marginal Artery Segmentation on CT Angiography by Multiple Cue Fusion", 
    "pagination": "518-25", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-40763-5_64"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4273f95540fbd545e09d8d92b4c837e2c83fad0d1944ee91d5ec28d8f67636b2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013949720"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24579180"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-40763-5_64", 
      "https://app.dimensions.ai/details/publication/pub.1013949720"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000562.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-40763-5_64"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40763-5_64'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40763-5_64'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40763-5_64'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40763-5_64'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      23 PREDICATES      51 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-40763-5_64 schema:about N0dee464289a246eea0c6b72dd7b1bf37
2 N21e64ac0d64946a6a4503ad3dd883454
3 N22f05850be8541efb7ee12ae7688af6f
4 N22ffb5876f4f42fc82709395c2aab8a3
5 N3e8e24de7ca445e6a021b8b5daec7f02
6 N50ade50358c748e598798eedff4a61c2
7 N5f10ee6745df484e914a31dea1e465f1
8 N77514d668e6746a99941fc6301a85719
9 N79842769e60d48b0a5eb58a1e44912af
10 N8b0ddc8bb22c4840ade25d7d02af042a
11 N943f3fc412d94d83a71d473a826f0d0d
12 Na399a50e45ef4a978739bee46d66fed4
13 Nc27e423e0e82462981803cc4a2d3896b
14 Ne36c39cef3f14e98a10df5f5fbc7d036
15 anzsrc-for:08
16 anzsrc-for:0801
17 schema:author N7d566ab03c694ca5ab19b6daff9d5c02
18 schema:citation sg:pub.10.1007/11566465_31
19 sg:pub.10.1007/978-3-540-75759-7_68
20 sg:pub.10.1023/b:visi.0000016147.97880.cd
21 https://doi.org/10.1016/j.imavis.2006.07.017
22 https://doi.org/10.1016/j.media.2009.07.011
23 https://doi.org/10.1016/j.media.2009.12.003
24 https://doi.org/10.1109/isbi.2006.1624876
25 https://doi.org/10.1109/tpami.2007.70727
26 https://doi.org/10.1118/1.1581411
27 schema:datePublished 2013
28 schema:datePublishedReg 2013-01-01
29 schema:description In this work we formulate vessel segmentation on contrast-enhanced CT angiogram images as a Bayesian tracking problem. To obtain posterior probability estimation of vessel location, we employ sequential Monte Carlo tracking and propose a new vessel segmentation method by fusing multiple cues extracted from CT images. These cues include intensity, vesselness, organ detection, and bridge information for poorly enhanced segments from global path minimization. By fusing local and global information for vessel tracking, we achieved high accuracy and robustness, with significantly improved precision compared to a traditional segmentation method (p = 0.0002). Our method was applied to the segmentation of the marginal artery of the colon, a small bore vessel of potential importance for colon segmentation and CT colonography. Experimental results indicate the effectiveness of the proposed method.
30 schema:editor N656270340ab84db29b7ee3630e07ce3c
31 schema:genre chapter
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf Nb301623a645a44a2aeaad54c2ff60ab0
35 schema:name Sequential Monte Carlo Tracking for Marginal Artery Segmentation on CT Angiography by Multiple Cue Fusion
36 schema:pagination 518-25
37 schema:productId N269e1752443d4d12aa498eff13bc8022
38 N2c58dea6fda3420e8d2232391185e564
39 N2def01e76fff4b0e9078bbbdd9b54d9a
40 N65433cd11de64068abfc36e1548dd6fb
41 schema:publisher N9faf25daaf694f7882f19601dc2320f1
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013949720
43 https://doi.org/10.1007/978-3-642-40763-5_64
44 schema:sdDatePublished 2019-04-15T16:50
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N04b1557c557444b2b9d0101213e551c4
47 schema:url http://link.springer.com/10.1007/978-3-642-40763-5_64
48 sgo:license sg:explorer/license/
49 sgo:sdDataset chapters
50 rdf:type schema:Chapter
51 N04b1557c557444b2b9d0101213e551c4 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N0dee464289a246eea0c6b72dd7b1bf37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
54 schema:name Subtraction Technique
55 rdf:type schema:DefinedTerm
56 N132e08fab951460ba6c3375c023d23c0 schema:familyName Pastor
57 schema:givenName Óscar
58 rdf:type schema:Person
59 N1cc4fe78de4e43fc98aa288eba52ea39 schema:familyName Norrie
60 schema:givenName Moira C.
61 rdf:type schema:Person
62 N21e64ac0d64946a6a4503ad3dd883454 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Angiography
64 rdf:type schema:DefinedTerm
65 N22f05850be8541efb7ee12ae7688af6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Monte Carlo Method
67 rdf:type schema:DefinedTerm
68 N22ffb5876f4f42fc82709395c2aab8a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Artificial Intelligence
70 rdf:type schema:DefinedTerm
71 N269e1752443d4d12aa498eff13bc8022 schema:name dimensions_id
72 schema:value pub.1013949720
73 rdf:type schema:PropertyValue
74 N2c58dea6fda3420e8d2232391185e564 schema:name readcube_id
75 schema:value 4273f95540fbd545e09d8d92b4c837e2c83fad0d1944ee91d5ec28d8f67636b2
76 rdf:type schema:PropertyValue
77 N2def01e76fff4b0e9078bbbdd9b54d9a schema:name doi
78 schema:value 10.1007/978-3-642-40763-5_64
79 rdf:type schema:PropertyValue
80 N3e8e24de7ca445e6a021b8b5daec7f02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Radiographic Image Interpretation, Computer-Assisted
82 rdf:type schema:DefinedTerm
83 N40ee184a89b8461aa45b7098c37900d9 rdf:first N132e08fab951460ba6c3375c023d23c0
84 rdf:rest rdf:nil
85 N433611345c60454fa348d88226021f1d rdf:first sg:person.011331054577.30
86 rdf:rest rdf:nil
87 N476c5ce31c4341b9b94f842d30e99552 rdf:first N1cc4fe78de4e43fc98aa288eba52ea39
88 rdf:rest N40ee184a89b8461aa45b7098c37900d9
89 N50ade50358c748e598798eedff4a61c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Sensitivity and Specificity
91 rdf:type schema:DefinedTerm
92 N589f88fe51974c439430f8327cf8c3b9 rdf:first sg:person.010067715257.33
93 rdf:rest N81f07d50494b428e8df385ba51aac2e4
94 N5f10ee6745df484e914a31dea1e465f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Reproducibility of Results
96 rdf:type schema:DefinedTerm
97 N65433cd11de64068abfc36e1548dd6fb schema:name pubmed_id
98 schema:value 24579180
99 rdf:type schema:PropertyValue
100 N656270340ab84db29b7ee3630e07ce3c rdf:first Nc1715291538740dda156a95cbca6e67d
101 rdf:rest N476c5ce31c4341b9b94f842d30e99552
102 N77514d668e6746a99941fc6301a85719 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Humans
104 rdf:type schema:DefinedTerm
105 N79842769e60d48b0a5eb58a1e44912af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Tomography, X-Ray Computed
107 rdf:type schema:DefinedTerm
108 N7ceb19a005dd44bea9f964845743160b rdf:first sg:person.01064012507.66
109 rdf:rest N433611345c60454fa348d88226021f1d
110 N7d566ab03c694ca5ab19b6daff9d5c02 rdf:first sg:person.01274114051.58
111 rdf:rest Nd120b1541f9e4c6d993c4864080e6fdb
112 N81f07d50494b428e8df385ba51aac2e4 rdf:first sg:person.01115414602.44
113 rdf:rest N7ceb19a005dd44bea9f964845743160b
114 N8b0ddc8bb22c4840ade25d7d02af042a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Colon
116 rdf:type schema:DefinedTerm
117 N943f3fc412d94d83a71d473a826f0d0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Data Interpretation, Statistical
119 rdf:type schema:DefinedTerm
120 N9faf25daaf694f7882f19601dc2320f1 schema:location Berlin, Heidelberg
121 schema:name Springer Berlin Heidelberg
122 rdf:type schema:Organisation
123 Na399a50e45ef4a978739bee46d66fed4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Pattern Recognition, Automated
125 rdf:type schema:DefinedTerm
126 Nb30108e5f2f64ca8902cd6eaea3fde25 rdf:first sg:person.01353423536.73
127 rdf:rest N589f88fe51974c439430f8327cf8c3b9
128 Nb301623a645a44a2aeaad54c2ff60ab0 schema:isbn 978-3-642-38708-1
129 978-3-642-38709-8
130 schema:name Advanced Information Systems Engineering
131 rdf:type schema:Book
132 Nc1715291538740dda156a95cbca6e67d schema:familyName Salinesi
133 schema:givenName Camille
134 rdf:type schema:Person
135 Nc27e423e0e82462981803cc4a2d3896b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Algorithms
137 rdf:type schema:DefinedTerm
138 Nd120b1541f9e4c6d993c4864080e6fdb rdf:first sg:person.01305310336.48
139 rdf:rest Nb30108e5f2f64ca8902cd6eaea3fde25
140 Ne36c39cef3f14e98a10df5f5fbc7d036 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Radiographic Image Enhancement
142 rdf:type schema:DefinedTerm
143 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
144 schema:name Information and Computing Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
147 schema:name Artificial Intelligence and Image Processing
148 rdf:type schema:DefinedTerm
149 sg:grant.4055703 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-642-40763-5_64
150 rdf:type schema:MonetaryGrant
151 sg:grant.4055994 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-642-40763-5_64
152 rdf:type schema:MonetaryGrant
153 sg:person.010067715257.33 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
154 schema:familyName Zhang
155 schema:givenName Weidong
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010067715257.33
157 rdf:type schema:Person
158 sg:person.01064012507.66 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
159 schema:familyName Wei
160 schema:givenName Zhuoshi
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064012507.66
162 rdf:type schema:Person
163 sg:person.01115414602.44 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
164 schema:familyName Liu
165 schema:givenName Jianfei
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115414602.44
167 rdf:type schema:Person
168 sg:person.011331054577.30 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
169 schema:familyName Summers
170 schema:givenName Ronald M.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30
172 rdf:type schema:Person
173 sg:person.01274114051.58 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
174 schema:familyName Wang
175 schema:givenName Shijun
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274114051.58
177 rdf:type schema:Person
178 sg:person.01305310336.48 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
179 schema:familyName Peplinski
180 schema:givenName Brandon
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305310336.48
182 rdf:type schema:Person
183 sg:person.01353423536.73 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
184 schema:familyName Lu
185 schema:givenName Le
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73
187 rdf:type schema:Person
188 sg:pub.10.1007/11566465_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050867337
189 https://doi.org/10.1007/11566465_31
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/978-3-540-75759-7_68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052787922
192 https://doi.org/10.1007/978-3-540-75759-7_68
193 rdf:type schema:CreativeWork
194 sg:pub.10.1023/b:visi.0000016147.97880.cd schema:sameAs https://app.dimensions.ai/details/publication/pub.1038841744
195 https://doi.org/10.1023/b:visi.0000016147.97880.cd
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.imavis.2006.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006320566
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.media.2009.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018744822
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.media.2009.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000004272
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/isbi.2006.1624876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094397069
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/tpami.2007.70727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743370
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1118/1.1581411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049170813
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.410305.3 schema:alternateName National Institutes of Health Clinical Center
210 schema:name Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, 20892-1182, U.S.
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...