A Variational Framework for Joint Detection and Segmentation of Ovarian Cancer Metastases View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2013

AUTHORS

Jianfei Liu , Shijun Wang , Marius George Linguraru , Jianhua Yao , Ronald M Summers

ABSTRACT

Detection and segmentation of ovarian cancer metastases have great clinical impacts on women's health. However, the random distribution and weak boundaries of metastases significantly complicate this task. This paper presents a variational framework that combines region competition based level set propagation and image matching flow computation to jointly detect and segment metastases. Image matching flow not only detects metastases, but also creates shape priors to reduce over-segmentation. Accordingly, accurate segmentation helps to improve the detection accuracy by separating flow computation in metastasis and non-metastasis regions. Since all components in the image processing pipeline benefit from each other, our joint framework can achieve accurate metastasis detection and segmentation. Validation on 50 patient datasets demonstrated that our joint approach was superior to a sequential method with sensitivity 89.2% vs. 81.4% (Fisher exact test p = 0.046) and false positive per patient 1.04 vs. 2.04. The Dice coefficient of metastasis segmentation was 92 +/- 5.2% vs. 72 +/- 8% (paired t-test p = 0.022), and the average surface distance was 1.9 +/- 1.5mm vs. 4.5 +/- 2.2mm (paired t-test p = 0.004). More... »

PAGES

83-90

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-40763-5_11

DOI

http://dx.doi.org/10.1007/978-3-642-40763-5_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015450823

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24579127


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ovarian Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Science, National Institutes of Health Clincial Center, Bethesda, MD 20892, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jianfei", 
        "id": "sg:person.01115414602.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115414602.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Science, National Institutes of Health Clincial Center, Bethesda, MD 20892, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Shijun", 
        "id": "sg:person.01274114051.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274114051.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Children\u2019s National Health System", 
          "id": "https://www.grid.ac/institutes/grid.239560.b", 
          "name": [
            "Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens National Medical Center, Washington, DC 20010, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Linguraru", 
        "givenName": "Marius George", 
        "id": "sg:person.01260626046.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260626046.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Science, National Institutes of Health Clincial Center, Bethesda, MD 20892, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Jianhua", 
        "id": "sg:person.012366760067.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Science, National Institutes of Health Clincial Center, Bethesda, MD 20892, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Summers", 
        "givenName": "Ronald M", 
        "id": "sg:person.011331054577.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1361-8415(03)00067-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009051330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1361-8415(03)00067-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009051330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-007-0109-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011294820", 
          "https://doi.org/10.1007/s11263-007-0109-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22092-0_43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018312991", 
          "https://doi.org/10.1007/978-3-642-22092-0_43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22092-0_43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018312991", 
          "https://doi.org/10.1007/978-3-642-22092-0_43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-33612-6_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034814213", 
          "https://doi.org/10.1007/978-3-642-33612-6_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11744023_37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043690672", 
          "https://doi.org/10.1007/11744023_37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11744023_37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043690672", 
          "https://doi.org/10.1007/11744023_37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074862704", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mmbia.2001.991698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093551240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2011.5995469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093582566"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Detection and segmentation of ovarian cancer metastases have great clinical impacts on women's health. However, the random distribution and weak boundaries of metastases significantly complicate this task. This paper presents a variational framework that combines region competition based level set propagation and image matching flow computation to jointly detect and segment metastases. Image matching flow not only detects metastases, but also creates shape priors to reduce over-segmentation. Accordingly, accurate segmentation helps to improve the detection accuracy by separating flow computation in metastasis and non-metastasis regions. Since all components in the image processing pipeline benefit from each other, our joint framework can achieve accurate metastasis detection and segmentation. Validation on 50 patient datasets demonstrated that our joint approach was superior to a sequential method with sensitivity 89.2% vs. 81.4% (Fisher exact test p = 0.046) and false positive per patient 1.04 vs. 2.04. The Dice coefficient of metastasis segmentation was 92 +/- 5.2% vs. 72 +/- 8% (paired t-test p = 0.022), and the average surface distance was 1.9 +/- 1.5mm vs. 4.5 +/- 2.2mm (paired t-test p = 0.004).", 
    "editor": [
      {
        "familyName": "Salinesi", 
        "givenName": "Camille", 
        "type": "Person"
      }, 
      {
        "familyName": "Norrie", 
        "givenName": "Moira C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Pastor", 
        "givenName": "\u00d3scar", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-40763-5_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4055703", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-642-38708-1", 
        "978-3-642-38709-8"
      ], 
      "name": "Advanced Information Systems Engineering", 
      "type": "Book"
    }, 
    "name": "A Variational Framework for Joint Detection and Segmentation of Ovarian Cancer Metastases", 
    "pagination": "83-90", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-40763-5_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "499ddf431850193558b8c2fb362129f0e2adfd11c77b62d7918712030e6a3f1a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015450823"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24579127"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-40763-5_11", 
      "https://app.dimensions.ai/details/publication/pub.1015450823"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000562.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-40763-5_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40763-5_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40763-5_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40763-5_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40763-5_11'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      23 PREDICATES      46 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-40763-5_11 schema:about N088e2ee55048458cb997f13470186845
2 N0af24e67fa9f466bb150f951c87fc1bf
3 N20fdfec3763749dc9eb3237d5c516ad9
4 N2776d6a395864ca5b038d299c74b945f
5 N27d7498c16f84f37a7508ebd149b3c9e
6 N4fa40ef9fd6f45bb925e9c35af839d21
7 N5c09e0b8938047e7957a57de0c0b75b3
8 N81634bc432c64acbb6c161d261334d5a
9 Nb67098137a454270aeb85be37bbd6c6e
10 Nd5e6f673347043ffbe5b5361d6ba3476
11 anzsrc-for:08
12 anzsrc-for:0801
13 schema:author N21a36bcbd62341318e2d0bf3645e05de
14 schema:citation sg:pub.10.1007/11744023_37
15 sg:pub.10.1007/978-3-642-22092-0_43
16 sg:pub.10.1007/978-3-642-33612-6_20
17 sg:pub.10.1007/s11263-007-0109-1
18 https://app.dimensions.ai/details/publication/pub.1074862704
19 https://doi.org/10.1016/s1361-8415(03)00067-7
20 https://doi.org/10.1109/cvpr.2011.5995469
21 https://doi.org/10.1109/mmbia.2001.991698
22 schema:datePublished 2013
23 schema:datePublishedReg 2013-01-01
24 schema:description Detection and segmentation of ovarian cancer metastases have great clinical impacts on women's health. However, the random distribution and weak boundaries of metastases significantly complicate this task. This paper presents a variational framework that combines region competition based level set propagation and image matching flow computation to jointly detect and segment metastases. Image matching flow not only detects metastases, but also creates shape priors to reduce over-segmentation. Accordingly, accurate segmentation helps to improve the detection accuracy by separating flow computation in metastasis and non-metastasis regions. Since all components in the image processing pipeline benefit from each other, our joint framework can achieve accurate metastasis detection and segmentation. Validation on 50 patient datasets demonstrated that our joint approach was superior to a sequential method with sensitivity 89.2% vs. 81.4% (Fisher exact test p = 0.046) and false positive per patient 1.04 vs. 2.04. The Dice coefficient of metastasis segmentation was 92 +/- 5.2% vs. 72 +/- 8% (paired t-test p = 0.022), and the average surface distance was 1.9 +/- 1.5mm vs. 4.5 +/- 2.2mm (paired t-test p = 0.004).
25 schema:editor N780e65f9961a489199cf008f856b5221
26 schema:genre chapter
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf Na51fedfeaae7496f8910c785a26fb9f5
30 schema:name A Variational Framework for Joint Detection and Segmentation of Ovarian Cancer Metastases
31 schema:pagination 83-90
32 schema:productId N9e386131fadf41869f3572106177a3db
33 Na753ebb11acc40fc9e3740b12e4b69f8
34 Nde443cc6c90c444fbc0c1a3377d51599
35 Nffc11c8ee4b54ecfa552c67e95cab23f
36 schema:publisher Ncf6efbc5c12945c0b5bf8f1ac15ba6c6
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015450823
38 https://doi.org/10.1007/978-3-642-40763-5_11
39 schema:sdDatePublished 2019-04-15T18:46
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N503ffa9a437642adac07d0f0a40e72d7
42 schema:url http://link.springer.com/10.1007/978-3-642-40763-5_11
43 sgo:license sg:explorer/license/
44 sgo:sdDataset chapters
45 rdf:type schema:Chapter
46 N04c0b36bf2f04b91b686e90bfb14a6b6 schema:familyName Pastor
47 schema:givenName Óscar
48 rdf:type schema:Person
49 N088e2ee55048458cb997f13470186845 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
50 schema:name Humans
51 rdf:type schema:DefinedTerm
52 N0af24e67fa9f466bb150f951c87fc1bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
53 schema:name Ovarian Neoplasms
54 rdf:type schema:DefinedTerm
55 N20fdfec3763749dc9eb3237d5c516ad9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Female
57 rdf:type schema:DefinedTerm
58 N21a36bcbd62341318e2d0bf3645e05de rdf:first sg:person.01115414602.44
59 rdf:rest N39daf90e7ba842a19f79481eb2a7e133
60 N2776d6a395864ca5b038d299c74b945f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Pattern Recognition, Automated
62 rdf:type schema:DefinedTerm
63 N27d7498c16f84f37a7508ebd149b3c9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Sensitivity and Specificity
65 rdf:type schema:DefinedTerm
66 N2eff8184e3c94034978fefb23088e8dc schema:name Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Science, National Institutes of Health Clincial Center, Bethesda, MD 20892, USA.
67 rdf:type schema:Organization
68 N39daf90e7ba842a19f79481eb2a7e133 rdf:first sg:person.01274114051.58
69 rdf:rest Nc83e2a03a5274358ba731800a76f905f
70 N4134ac1df403498197886a5adc3c4ea8 rdf:first sg:person.011331054577.30
71 rdf:rest rdf:nil
72 N4fa40ef9fd6f45bb925e9c35af839d21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Algorithms
74 rdf:type schema:DefinedTerm
75 N503ffa9a437642adac07d0f0a40e72d7 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N5c09e0b8938047e7957a57de0c0b75b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Reproducibility of Results
79 rdf:type schema:DefinedTerm
80 N5f84da83648e4b1d9d396910ca9790a0 rdf:first N04c0b36bf2f04b91b686e90bfb14a6b6
81 rdf:rest rdf:nil
82 N7701168f077f450bbc741d74ee12df4d rdf:first Nb75645e17d924a78ae4bf0efeedeb23f
83 rdf:rest N5f84da83648e4b1d9d396910ca9790a0
84 N780e65f9961a489199cf008f856b5221 rdf:first Nfb83a8b25f9d460e8b4022812139c7af
85 rdf:rest N7701168f077f450bbc741d74ee12df4d
86 N81634bc432c64acbb6c161d261334d5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Artificial Intelligence
88 rdf:type schema:DefinedTerm
89 N9e386131fadf41869f3572106177a3db schema:name doi
90 schema:value 10.1007/978-3-642-40763-5_11
91 rdf:type schema:PropertyValue
92 Na51fedfeaae7496f8910c785a26fb9f5 schema:isbn 978-3-642-38708-1
93 978-3-642-38709-8
94 schema:name Advanced Information Systems Engineering
95 rdf:type schema:Book
96 Na753ebb11acc40fc9e3740b12e4b69f8 schema:name readcube_id
97 schema:value 499ddf431850193558b8c2fb362129f0e2adfd11c77b62d7918712030e6a3f1a
98 rdf:type schema:PropertyValue
99 Nb67098137a454270aeb85be37bbd6c6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Image Interpretation, Computer-Assisted
101 rdf:type schema:DefinedTerm
102 Nb75645e17d924a78ae4bf0efeedeb23f schema:familyName Norrie
103 schema:givenName Moira C.
104 rdf:type schema:Person
105 Nc1e4ba7d107945ab99ed05431fd2baf3 rdf:first sg:person.012366760067.46
106 rdf:rest N4134ac1df403498197886a5adc3c4ea8
107 Nc626286aeb6d4786a08d757c445a718b schema:name Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Science, National Institutes of Health Clincial Center, Bethesda, MD 20892, USA.
108 rdf:type schema:Organization
109 Nc83e2a03a5274358ba731800a76f905f rdf:first sg:person.01260626046.05
110 rdf:rest Nc1e4ba7d107945ab99ed05431fd2baf3
111 Nc9317321ca0f4f189b4f97c7f06ec477 schema:name Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Science, National Institutes of Health Clincial Center, Bethesda, MD 20892, USA.
112 rdf:type schema:Organization
113 Ncf6efbc5c12945c0b5bf8f1ac15ba6c6 schema:location Berlin, Heidelberg
114 schema:name Springer Berlin Heidelberg
115 rdf:type schema:Organisation
116 Nd5e6f673347043ffbe5b5361d6ba3476 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Image Enhancement
118 rdf:type schema:DefinedTerm
119 Nde443cc6c90c444fbc0c1a3377d51599 schema:name dimensions_id
120 schema:value pub.1015450823
121 rdf:type schema:PropertyValue
122 Nebbed3e4873d4a6db8a392bbbc358924 schema:name Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Science, National Institutes of Health Clincial Center, Bethesda, MD 20892, USA.
123 rdf:type schema:Organization
124 Nfb83a8b25f9d460e8b4022812139c7af schema:familyName Salinesi
125 schema:givenName Camille
126 rdf:type schema:Person
127 Nffc11c8ee4b54ecfa552c67e95cab23f schema:name pubmed_id
128 schema:value 24579127
129 rdf:type schema:PropertyValue
130 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
131 schema:name Information and Computing Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
134 schema:name Artificial Intelligence and Image Processing
135 rdf:type schema:DefinedTerm
136 sg:grant.4055703 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-642-40763-5_11
137 rdf:type schema:MonetaryGrant
138 sg:person.01115414602.44 schema:affiliation N2eff8184e3c94034978fefb23088e8dc
139 schema:familyName Liu
140 schema:givenName Jianfei
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115414602.44
142 rdf:type schema:Person
143 sg:person.011331054577.30 schema:affiliation Nebbed3e4873d4a6db8a392bbbc358924
144 schema:familyName Summers
145 schema:givenName Ronald M
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30
147 rdf:type schema:Person
148 sg:person.012366760067.46 schema:affiliation Nc9317321ca0f4f189b4f97c7f06ec477
149 schema:familyName Yao
150 schema:givenName Jianhua
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46
152 rdf:type schema:Person
153 sg:person.01260626046.05 schema:affiliation https://www.grid.ac/institutes/grid.239560.b
154 schema:familyName Linguraru
155 schema:givenName Marius George
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260626046.05
157 rdf:type schema:Person
158 sg:person.01274114051.58 schema:affiliation Nc626286aeb6d4786a08d757c445a718b
159 schema:familyName Wang
160 schema:givenName Shijun
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274114051.58
162 rdf:type schema:Person
163 sg:pub.10.1007/11744023_37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043690672
164 https://doi.org/10.1007/11744023_37
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/978-3-642-22092-0_43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018312991
167 https://doi.org/10.1007/978-3-642-22092-0_43
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/978-3-642-33612-6_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034814213
170 https://doi.org/10.1007/978-3-642-33612-6_20
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s11263-007-0109-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011294820
173 https://doi.org/10.1007/s11263-007-0109-1
174 rdf:type schema:CreativeWork
175 https://app.dimensions.ai/details/publication/pub.1074862704 schema:CreativeWork
176 https://doi.org/10.1016/s1361-8415(03)00067-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009051330
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/cvpr.2011.5995469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093582566
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/mmbia.2001.991698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093551240
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.239560.b schema:alternateName Children’s National Health System
183 schema:name Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens National Medical Center, Washington, DC 20010, USA.
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...