Learning without Labeling: Domain Adaptation for Ultrasound Transducer Localization View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2013

AUTHORS

Tobias Heimann , Peter Mountney , Matthias John , Razvan Ionasec

ABSTRACT

The fusion of image data from trans-esophageal echography (TEE) and X-ray fluoroscopy is attracting increasing interest in minimally-invasive treatment of structural heart disease. In order to calculate the needed transform between both imaging systems, we employ a discriminative learning based approach to localize the TEE transducer in X-ray images. Instead of time-consuming manual labeling, we generate the required training data automatically from a single volumetric image of the transducer. In order to adapt this system to real X-ray data, we use unlabeled fluoroscopy images to estimate differences in feature space density and correct covariate shift by instance weighting. An evaluation on more than 1900 images reveals that our approach reduces detection failures by 95% compared to cross validation on the test set and improves the localization error from 1.5 to 0.8 mm. Due to the automatic generation of training data, the proposed system is highly flexible and can be adapted to any medical device with minimal efforts. More... »

PAGES

49-56

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-40760-4_7

DOI

http://dx.doi.org/10.1007/978-3-642-40760-4_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038676723

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24505743


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluoroscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multimodal Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Staining and Labeling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transducers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography, Interventional", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Siemens (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Siemens AG, Corporate Technology, Erlangen, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heimann", 
        "givenName": "Tobias", 
        "id": "sg:person.01327453250.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327453250.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporation, Corporate Technology, Princeton, NJ, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mountney", 
        "givenName": "Peter", 
        "id": "sg:person.0702376130.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702376130.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Siemens AG, Healthcare Sector, Forchheim, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "John", 
        "givenName": "Matthias", 
        "id": "sg:person.01057125010.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057125010.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporation, Corporate Technology, Princeton, NJ, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ionasec", 
        "givenName": "Razvan", 
        "id": "sg:person.01010560470.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-01932-6_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008997613", 
          "https://doi.org/10.1007/978-3-642-01932-6_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-01932-6_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008997613", 
          "https://doi.org/10.1007/978-3-642-01932-6_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-33418-4_67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009497600", 
          "https://doi.org/10.1007/978-3-642-33418-4_67"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2011.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010791772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-3758(00)00115-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015102206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2012.2189392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061528749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2008.2004421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695160"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "The fusion of image data from trans-esophageal echography (TEE) and X-ray fluoroscopy is attracting increasing interest in minimally-invasive treatment of structural heart disease. In order to calculate the needed transform between both imaging systems, we employ a discriminative learning based approach to localize the TEE transducer in X-ray images. Instead of time-consuming manual labeling, we generate the required training data automatically from a single volumetric image of the transducer. In order to adapt this system to real X-ray data, we use unlabeled fluoroscopy images to estimate differences in feature space density and correct covariate shift by instance weighting. An evaluation on more than 1900 images reveals that our approach reduces detection failures by 95% compared to cross validation on the test set and improves the localization error from 1.5 to 0.8 mm. Due to the automatic generation of training data, the proposed system is highly flexible and can be adapted to any medical device with minimal efforts.", 
    "editor": [
      {
        "familyName": "Salinesi", 
        "givenName": "Camille", 
        "type": "Person"
      }, 
      {
        "familyName": "Norrie", 
        "givenName": "Moira C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Pastor", 
        "givenName": "\u00d3scar", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-40760-4_7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-38708-1", 
        "978-3-642-38709-8"
      ], 
      "name": "Advanced Information Systems Engineering", 
      "type": "Book"
    }, 
    "name": "Learning without Labeling: Domain Adaptation for Ultrasound Transducer Localization", 
    "pagination": "49-56", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-40760-4_7"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b83d469073752dfe830de4d1eb2cdc11c847f8d5bfbef7f6be48e59cfbc443fd"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038676723"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24505743"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-40760-4_7", 
      "https://app.dimensions.ai/details/publication/pub.1038676723"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000562.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-40760-4_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40760-4_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40760-4_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40760-4_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40760-4_7'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      23 PREDICATES      46 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-40760-4_7 schema:about N116eaf4ce95b4652bc2199aec07248c2
2 N399b14b59f1e4d08b6eb0d7c8fa7e3de
3 N47e1a733c004427d894db88ecdab47cd
4 N4a5e0f35d39f4faca26514a8bed93cdc
5 N606a67e8a80a47e199f2db75551b2a8b
6 N6095faab80a04b53888449e564a6ce86
7 N6115fa1c4e924b4eb09009a929482b85
8 N620b1ddc1d434445a841c7e26ff5d604
9 N8d1d8ab567214447a15544a45adf763f
10 N927bdbc07e1e417faea2cec2d3c0a36b
11 Nc5438a83b5bc409dba48437723f9eaaa
12 Ndd73407f1fda4e7ba126c85de3101158
13 anzsrc-for:08
14 anzsrc-for:0801
15 schema:author N75f7551911cf4ce79d9fbfd036189915
16 schema:citation sg:pub.10.1007/978-3-642-01932-6_35
17 sg:pub.10.1007/978-3-642-33418-4_67
18 https://doi.org/10.1016/j.media.2011.05.003
19 https://doi.org/10.1016/s0378-3758(00)00115-4
20 https://doi.org/10.1109/tbme.2012.2189392
21 https://doi.org/10.1109/tmi.2008.2004421
22 schema:datePublished 2013
23 schema:datePublishedReg 2013-01-01
24 schema:description The fusion of image data from trans-esophageal echography (TEE) and X-ray fluoroscopy is attracting increasing interest in minimally-invasive treatment of structural heart disease. In order to calculate the needed transform between both imaging systems, we employ a discriminative learning based approach to localize the TEE transducer in X-ray images. Instead of time-consuming manual labeling, we generate the required training data automatically from a single volumetric image of the transducer. In order to adapt this system to real X-ray data, we use unlabeled fluoroscopy images to estimate differences in feature space density and correct covariate shift by instance weighting. An evaluation on more than 1900 images reveals that our approach reduces detection failures by 95% compared to cross validation on the test set and improves the localization error from 1.5 to 0.8 mm. Due to the automatic generation of training data, the proposed system is highly flexible and can be adapted to any medical device with minimal efforts.
25 schema:editor N06df917d82654714a27b12407f66b535
26 schema:genre chapter
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf N0081156075354ac88419fd7de88b9674
30 schema:name Learning without Labeling: Domain Adaptation for Ultrasound Transducer Localization
31 schema:pagination 49-56
32 schema:productId N0cd93cfa0f0c44a9be84f902117c318c
33 N3ba913467bd94e36a111d687fa589c69
34 N3e36910072b04fecaef0ccd8fed9a3c6
35 Na0329e6bce3c4a0395fd0f27557464e4
36 schema:publisher N7526bd3f650a4101bb2801e617cb8a9e
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038676723
38 https://doi.org/10.1007/978-3-642-40760-4_7
39 schema:sdDatePublished 2019-04-16T00:26
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N555a928b0ece43d7908307d8633b95ea
42 schema:url http://link.springer.com/10.1007/978-3-642-40760-4_7
43 sgo:license sg:explorer/license/
44 sgo:sdDataset chapters
45 rdf:type schema:Chapter
46 N0081156075354ac88419fd7de88b9674 schema:isbn 978-3-642-38708-1
47 978-3-642-38709-8
48 schema:name Advanced Information Systems Engineering
49 rdf:type schema:Book
50 N06df917d82654714a27b12407f66b535 rdf:first N2169dcc4e829451185d0165d41a02ae7
51 rdf:rest N322834c3a4f04a32bb6ec51fc254f536
52 N0cd93cfa0f0c44a9be84f902117c318c schema:name doi
53 schema:value 10.1007/978-3-642-40760-4_7
54 rdf:type schema:PropertyValue
55 N116eaf4ce95b4652bc2199aec07248c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Pattern Recognition, Automated
57 rdf:type schema:DefinedTerm
58 N2169dcc4e829451185d0165d41a02ae7 schema:familyName Salinesi
59 schema:givenName Camille
60 rdf:type schema:Person
61 N322834c3a4f04a32bb6ec51fc254f536 rdf:first N41d14c621f1a424d92f2d81982e1c76f
62 rdf:rest Nf11720bda63849f6b3c6ec9b4a57e0d7
63 N399b14b59f1e4d08b6eb0d7c8fa7e3de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Algorithms
65 rdf:type schema:DefinedTerm
66 N3ba913467bd94e36a111d687fa589c69 schema:name readcube_id
67 schema:value b83d469073752dfe830de4d1eb2cdc11c847f8d5bfbef7f6be48e59cfbc443fd
68 rdf:type schema:PropertyValue
69 N3e36910072b04fecaef0ccd8fed9a3c6 schema:name dimensions_id
70 schema:value pub.1038676723
71 rdf:type schema:PropertyValue
72 N41d14c621f1a424d92f2d81982e1c76f schema:familyName Norrie
73 schema:givenName Moira C.
74 rdf:type schema:Person
75 N47e1a733c004427d894db88ecdab47cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Sensitivity and Specificity
77 rdf:type schema:DefinedTerm
78 N4a5e0f35d39f4faca26514a8bed93cdc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Reproducibility of Results
80 rdf:type schema:DefinedTerm
81 N555a928b0ece43d7908307d8633b95ea schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N606a67e8a80a47e199f2db75551b2a8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Image Interpretation, Computer-Assisted
85 rdf:type schema:DefinedTerm
86 N6095faab80a04b53888449e564a6ce86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Staining and Labeling
88 rdf:type schema:DefinedTerm
89 N6115fa1c4e924b4eb09009a929482b85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Image Enhancement
91 rdf:type schema:DefinedTerm
92 N620b1ddc1d434445a841c7e26ff5d604 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Transducers
94 rdf:type schema:DefinedTerm
95 N7526bd3f650a4101bb2801e617cb8a9e schema:location Berlin, Heidelberg
96 schema:name Springer Berlin Heidelberg
97 rdf:type schema:Organisation
98 N75f7551911cf4ce79d9fbfd036189915 rdf:first sg:person.01327453250.15
99 rdf:rest N7ceeffccad60416687cb385b3885f3ff
100 N7ceeffccad60416687cb385b3885f3ff rdf:first sg:person.0702376130.54
101 rdf:rest Nd4f7eb94be45467cb566ff26633795ed
102 N8d1d8ab567214447a15544a45adf763f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Humans
104 rdf:type schema:DefinedTerm
105 N927bdbc07e1e417faea2cec2d3c0a36b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Fluoroscopy
107 rdf:type schema:DefinedTerm
108 N9c83488f9f2e4546b38d9e4b8bc54577 rdf:first sg:person.01010560470.38
109 rdf:rest rdf:nil
110 Na0329e6bce3c4a0395fd0f27557464e4 schema:name pubmed_id
111 schema:value 24505743
112 rdf:type schema:PropertyValue
113 Na8ff1280a7754652802d3a58f287aa9e schema:familyName Pastor
114 schema:givenName Óscar
115 rdf:type schema:Person
116 Nc5438a83b5bc409dba48437723f9eaaa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Ultrasonography, Interventional
118 rdf:type schema:DefinedTerm
119 Nd4f7eb94be45467cb566ff26633795ed rdf:first sg:person.01057125010.36
120 rdf:rest N9c83488f9f2e4546b38d9e4b8bc54577
121 Ndd73407f1fda4e7ba126c85de3101158 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Multimodal Imaging
123 rdf:type schema:DefinedTerm
124 Nf11720bda63849f6b3c6ec9b4a57e0d7 rdf:first Na8ff1280a7754652802d3a58f287aa9e
125 rdf:rest rdf:nil
126 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
127 schema:name Information and Computing Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
130 schema:name Artificial Intelligence and Image Processing
131 rdf:type schema:DefinedTerm
132 sg:person.01010560470.38 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
133 schema:familyName Ionasec
134 schema:givenName Razvan
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38
136 rdf:type schema:Person
137 sg:person.01057125010.36 schema:affiliation https://www.grid.ac/institutes/grid.5406.7
138 schema:familyName John
139 schema:givenName Matthias
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057125010.36
141 rdf:type schema:Person
142 sg:person.01327453250.15 schema:affiliation https://www.grid.ac/institutes/grid.5406.7
143 schema:familyName Heimann
144 schema:givenName Tobias
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327453250.15
146 rdf:type schema:Person
147 sg:person.0702376130.54 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
148 schema:familyName Mountney
149 schema:givenName Peter
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702376130.54
151 rdf:type schema:Person
152 sg:pub.10.1007/978-3-642-01932-6_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008997613
153 https://doi.org/10.1007/978-3-642-01932-6_35
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/978-3-642-33418-4_67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009497600
156 https://doi.org/10.1007/978-3-642-33418-4_67
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.media.2011.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010791772
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0378-3758(00)00115-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015102206
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/tbme.2012.2189392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061528749
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/tmi.2008.2004421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695160
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.419233.e schema:alternateName Siemens (United States)
167 schema:name Siemens Corporation, Corporate Technology, Princeton, NJ, USA.
168 rdf:type schema:Organization
169 https://www.grid.ac/institutes/grid.5406.7 schema:alternateName Siemens (Germany)
170 schema:name Siemens AG, Corporate Technology, Erlangen, Germany.
171 Siemens AG, Healthcare Sector, Forchheim, Germany.
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...