Multimodal Image Driven Patient Specific Tumor Growth Modeling View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2013

AUTHORS

Yixun Liu , Samira M Sadowski , Allison B Weisbrod , Electron Kebebew , Ronald M Summers , Jianhua Yao

ABSTRACT

Personalized tumor growth model using clinical imaging data is valuable in tumor staging and therapy planning. In this paper, we build a patient specific tumor growth model based on longitudinal dual phase CT and FDG-PET. We propose a reaction-advection-diffusion model integrating cancerous cell proliferation, infiltration, metabolic rate and extracellular matrix biomechanical response. We then develop a scheme to bridge our model with multimodal radiologic images through intracellular volume fraction (ICVF) and Standardized Uptake Value (SUV). The model was evaluated by comparing the predicted tumors with the observed tumors in terms of average surface distance (ASD), root mean square difference (RMSD) of the ICVF map, the average ICVF difference (AICVFD) of tumor surface and the tumor relative volume difference (RVD) on six patients with pathologically confirmed pancreatic neuroendocrine tumors. The ASD between the predicted tumor and the reference tumor was 2.5 +/- 0.7 mm, the RMSD was 4.3 +/- 0.6%, the AICVFD was 2.6 +/- 0.8%, and the RVD was 7.7 +/- 1.9%. More... »

PAGES

283-90

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-40760-4_36

DOI

http://dx.doi.org/10.1007/978-3-642-40760-4_36

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007239724

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24505772


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Proliferation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multimodal Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pancreatic Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient-Centered Care", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tumor Burden", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Radiology and Imaging Sciences, NIH, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yixun", 
        "id": "sg:person.016642134744.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016642134744.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Endocrine Oncology Branch, National Cancer Institute, NIH, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sadowski", 
        "givenName": "Samira M", 
        "id": "sg:person.0744172402.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744172402.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Endocrine Oncology Branch, National Cancer Institute, NIH, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weisbrod", 
        "givenName": "Allison B", 
        "id": "sg:person.01041130537.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041130537.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Endocrine Oncology Branch, National Cancer Institute, NIH, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kebebew", 
        "givenName": "Electron", 
        "id": "sg:person.0724132322.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724132322.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Radiology and Imaging Sciences, NIH, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Summers", 
        "givenName": "Ronald M", 
        "id": "sg:person.011331054577.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Radiology and Imaging Sciences, NIH, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Jianhua", 
        "id": "sg:person.012366760067.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00285-007-0139-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012292263", 
          "https://doi.org/10.1007/s00285-007-0139-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-007-0139-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012292263", 
          "https://doi.org/10.1007/s00285-007-0139-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2011.11.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026122620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2011.11.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026122620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2184.2000.00177.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029104932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12112458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029817962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35098076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041527409", 
          "https://doi.org/10.1038/35098076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35098076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041527409", 
          "https://doi.org/10.1038/35098076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0969-8051(00)00155-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046439845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2005.857217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694777"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Personalized tumor growth model using clinical imaging data is valuable in tumor staging and therapy planning. In this paper, we build a patient specific tumor growth model based on longitudinal dual phase CT and FDG-PET. We propose a reaction-advection-diffusion model integrating cancerous cell proliferation, infiltration, metabolic rate and extracellular matrix biomechanical response. We then develop a scheme to bridge our model with multimodal radiologic images through intracellular volume fraction (ICVF) and Standardized Uptake Value (SUV). The model was evaluated by comparing the predicted tumors with the observed tumors in terms of average surface distance (ASD), root mean square difference (RMSD) of the ICVF map, the average ICVF difference (AICVFD) of tumor surface and the tumor relative volume difference (RVD) on six patients with pathologically confirmed pancreatic neuroendocrine tumors. The ASD between the predicted tumor and the reference tumor was 2.5 +/- 0.7 mm, the RMSD was 4.3 +/- 0.6%, the AICVFD was 2.6 +/- 0.8%, and the RVD was 7.7 +/- 1.9%.", 
    "editor": [
      {
        "familyName": "Salinesi", 
        "givenName": "Camille", 
        "type": "Person"
      }, 
      {
        "familyName": "Norrie", 
        "givenName": "Moira C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Pastor", 
        "givenName": "\u00d3scar", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-40760-4_36", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4055858", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-642-38708-1", 
        "978-3-642-38709-8"
      ], 
      "name": "Advanced Information Systems Engineering", 
      "type": "Book"
    }, 
    "name": "Multimodal Image Driven Patient Specific Tumor Growth Modeling", 
    "pagination": "283-90", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-40760-4_36"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "227c1778dcb48e716a49d9b2e76154225803ea2708f82cf86c49c52470a55fcb"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007239724"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24505772"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-40760-4_36", 
      "https://app.dimensions.ai/details/publication/pub.1007239724"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000562.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-40760-4_36"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40760-4_36'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40760-4_36'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40760-4_36'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40760-4_36'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      23 PREDICATES      53 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-40760-4_36 schema:about N01bd42245d264c78bdf56ae504a3382d
2 N0b31414743814665a71525693efddd1a
3 N0da8e126f1894f53819e497d014d0239
4 N1341ae75dd8041718b5269c7a2b52989
5 N229490feb7b543ee89615bb0c03c7cef
6 N33aeabd302714fd391b82a98c53b3282
7 N46f4311f024c4c26978ae4d26ef455bd
8 N8a68d9e83f094b758e0d1dd920a5f742
9 N9cc8980b7bfb42e9a09ba2ddedff21fd
10 N9eefc054faf245fb990ea4027d2da6f0
11 N9fce2fc1a102492dae65f4e99381d0c6
12 Nabfe0f9b7175414bad7e0179034a5c5f
13 Nb1523713d3be4f04acbca020308de4d0
14 Nb7d19b4bedb240f28f5a5099f62e016c
15 Nbd2dfdf28fe14f3f9c9d67a8d73952f4
16 Nbf0b01eb6f304f74897c419b699b7db2
17 Nd9014f4f49f7435c9f2b755a3611fec8
18 Nfa04673afdad47ca90dac2a30ef919f5
19 anzsrc-for:11
20 anzsrc-for:1103
21 schema:author N5a0c6f9618074a99bd7861ac102540e0
22 schema:citation sg:pub.10.1007/s00285-007-0139-x
23 sg:pub.10.1038/35098076
24 https://doi.org/10.1016/j.cell.2011.11.060
25 https://doi.org/10.1016/s0969-8051(00)00155-4
26 https://doi.org/10.1046/j.1365-2184.2000.00177.x
27 https://doi.org/10.1109/tmi.2005.857217
28 https://doi.org/10.1148/radiol.12112458
29 schema:datePublished 2013
30 schema:datePublishedReg 2013-01-01
31 schema:description Personalized tumor growth model using clinical imaging data is valuable in tumor staging and therapy planning. In this paper, we build a patient specific tumor growth model based on longitudinal dual phase CT and FDG-PET. We propose a reaction-advection-diffusion model integrating cancerous cell proliferation, infiltration, metabolic rate and extracellular matrix biomechanical response. We then develop a scheme to bridge our model with multimodal radiologic images through intracellular volume fraction (ICVF) and Standardized Uptake Value (SUV). The model was evaluated by comparing the predicted tumors with the observed tumors in terms of average surface distance (ASD), root mean square difference (RMSD) of the ICVF map, the average ICVF difference (AICVFD) of tumor surface and the tumor relative volume difference (RVD) on six patients with pathologically confirmed pancreatic neuroendocrine tumors. The ASD between the predicted tumor and the reference tumor was 2.5 +/- 0.7 mm, the RMSD was 4.3 +/- 0.6%, the AICVFD was 2.6 +/- 0.8%, and the RVD was 7.7 +/- 1.9%.
32 schema:editor Nf49f8f072d844c968a658c4cbf6ff6a9
33 schema:genre chapter
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N069221cb34d64c50aa14966096d138b8
37 schema:name Multimodal Image Driven Patient Specific Tumor Growth Modeling
38 schema:pagination 283-90
39 schema:productId N0bf1047e9480424e8d248e8c3e33584d
40 N8dae451d4a934206a674ba9265bb6396
41 Nb0f4ca58641e4cdaa10a54155bb6a52a
42 Nb52c59a8998a445abbe8285fb7b2dcaa
43 schema:publisher Nd39d656bba1c4edbad3fb50134a66208
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007239724
45 https://doi.org/10.1007/978-3-642-40760-4_36
46 schema:sdDatePublished 2019-04-15T21:35
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Na24a674a3c774df5ae3b5cb73bae1cf4
49 schema:url http://link.springer.com/10.1007/978-3-642-40760-4_36
50 sgo:license sg:explorer/license/
51 sgo:sdDataset chapters
52 rdf:type schema:Chapter
53 N01bd42245d264c78bdf56ae504a3382d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
54 schema:name Tumor Burden
55 rdf:type schema:DefinedTerm
56 N069221cb34d64c50aa14966096d138b8 schema:isbn 978-3-642-38708-1
57 978-3-642-38709-8
58 schema:name Advanced Information Systems Engineering
59 rdf:type schema:Book
60 N0b31414743814665a71525693efddd1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Fluorodeoxyglucose F18
62 rdf:type schema:DefinedTerm
63 N0bf1047e9480424e8d248e8c3e33584d schema:name doi
64 schema:value 10.1007/978-3-642-40760-4_36
65 rdf:type schema:PropertyValue
66 N0d08e881d4a14772807ed04d15ee082d schema:name Radiology and Imaging Sciences, NIH, USA.
67 rdf:type schema:Organization
68 N0da8e126f1894f53819e497d014d0239 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Humans
70 rdf:type schema:DefinedTerm
71 N1341ae75dd8041718b5269c7a2b52989 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Reproducibility of Results
73 rdf:type schema:DefinedTerm
74 N18d2580361794195ab5ed2185e18ce0f schema:name Radiology and Imaging Sciences, NIH, USA.
75 rdf:type schema:Organization
76 N223ea67341544de58373bf1df14e8ac6 schema:name Endocrine Oncology Branch, National Cancer Institute, NIH, USA.
77 rdf:type schema:Organization
78 N229490feb7b543ee89615bb0c03c7cef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Computer Simulation
80 rdf:type schema:DefinedTerm
81 N2f3e402d1d164d2b9b6778a911fb47e8 schema:name Endocrine Oncology Branch, National Cancer Institute, NIH, USA.
82 rdf:type schema:Organization
83 N33aeabd302714fd391b82a98c53b3282 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Radiopharmaceuticals
85 rdf:type schema:DefinedTerm
86 N42d8dde5c8f441db8ad7b7d799d90ab1 rdf:first sg:person.0744172402.34
87 rdf:rest N9d28180c0a3a48d68a0b354ba0675899
88 N46f4311f024c4c26978ae4d26ef455bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Cell Proliferation
90 rdf:type schema:DefinedTerm
91 N5a0c6f9618074a99bd7861ac102540e0 rdf:first sg:person.016642134744.11
92 rdf:rest N42d8dde5c8f441db8ad7b7d799d90ab1
93 N6a79c2946c1144b0b826ac5e8375035e rdf:first sg:person.012366760067.46
94 rdf:rest rdf:nil
95 N6ebc29b8a78b40d4b2c7b7c21e0c5aa8 schema:familyName Pastor
96 schema:givenName Óscar
97 rdf:type schema:Person
98 N766c5d22f136469c88f6b56e84feb81e schema:name Radiology and Imaging Sciences, NIH, USA.
99 rdf:type schema:Organization
100 N8a68d9e83f094b758e0d1dd920a5f742 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Positron-Emission Tomography
102 rdf:type schema:DefinedTerm
103 N8dae451d4a934206a674ba9265bb6396 schema:name dimensions_id
104 schema:value pub.1007239724
105 rdf:type schema:PropertyValue
106 N8e1524f3dfc1417c8c9ea3c3908d8153 schema:name Endocrine Oncology Branch, National Cancer Institute, NIH, USA.
107 rdf:type schema:Organization
108 N99bb00e840794e02905e89689fe893ea rdf:first N6ebc29b8a78b40d4b2c7b7c21e0c5aa8
109 rdf:rest rdf:nil
110 N9cc8980b7bfb42e9a09ba2ddedff21fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Imaging, Three-Dimensional
112 rdf:type schema:DefinedTerm
113 N9d28180c0a3a48d68a0b354ba0675899 rdf:first sg:person.01041130537.56
114 rdf:rest N9f786d18e08a44efa85911d4a32c9dd5
115 N9eefc054faf245fb990ea4027d2da6f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Image Interpretation, Computer-Assisted
117 rdf:type schema:DefinedTerm
118 N9f786d18e08a44efa85911d4a32c9dd5 rdf:first sg:person.0724132322.08
119 rdf:rest Na2ea280341ae48dda83f0371569f9780
120 N9fce2fc1a102492dae65f4e99381d0c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Tomography, X-Ray Computed
122 rdf:type schema:DefinedTerm
123 Na24a674a3c774df5ae3b5cb73bae1cf4 schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 Na2ea280341ae48dda83f0371569f9780 rdf:first sg:person.011331054577.30
126 rdf:rest N6a79c2946c1144b0b826ac5e8375035e
127 Na9f32118619842afa886a7e3faa03b45 rdf:first Naa8c369e7d544edfbedbf6fd0a168077
128 rdf:rest N99bb00e840794e02905e89689fe893ea
129 Naa8c369e7d544edfbedbf6fd0a168077 schema:familyName Norrie
130 schema:givenName Moira C.
131 rdf:type schema:Person
132 Nabfe0f9b7175414bad7e0179034a5c5f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Sensitivity and Specificity
134 rdf:type schema:DefinedTerm
135 Nb0f4ca58641e4cdaa10a54155bb6a52a schema:name readcube_id
136 schema:value 227c1778dcb48e716a49d9b2e76154225803ea2708f82cf86c49c52470a55fcb
137 rdf:type schema:PropertyValue
138 Nb1523713d3be4f04acbca020308de4d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Image Enhancement
140 rdf:type schema:DefinedTerm
141 Nb52c59a8998a445abbe8285fb7b2dcaa schema:name pubmed_id
142 schema:value 24505772
143 rdf:type schema:PropertyValue
144 Nb7d19b4bedb240f28f5a5099f62e016c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Patient-Centered Care
146 rdf:type schema:DefinedTerm
147 Nbd2dfdf28fe14f3f9c9d67a8d73952f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Multimodal Imaging
149 rdf:type schema:DefinedTerm
150 Nbf0b01eb6f304f74897c419b699b7db2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Algorithms
152 rdf:type schema:DefinedTerm
153 Ncf04a587ac2c4e4fa0443a31c1bdb39f schema:familyName Salinesi
154 schema:givenName Camille
155 rdf:type schema:Person
156 Nd39d656bba1c4edbad3fb50134a66208 schema:location Berlin, Heidelberg
157 schema:name Springer Berlin Heidelberg
158 rdf:type schema:Organisation
159 Nd9014f4f49f7435c9f2b755a3611fec8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Pancreatic Neoplasms
161 rdf:type schema:DefinedTerm
162 Nf49f8f072d844c968a658c4cbf6ff6a9 rdf:first Ncf04a587ac2c4e4fa0443a31c1bdb39f
163 rdf:rest Na9f32118619842afa886a7e3faa03b45
164 Nfa04673afdad47ca90dac2a30ef919f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Models, Biological
166 rdf:type schema:DefinedTerm
167 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
168 schema:name Medical and Health Sciences
169 rdf:type schema:DefinedTerm
170 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
171 schema:name Clinical Sciences
172 rdf:type schema:DefinedTerm
173 sg:grant.4055858 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-642-40760-4_36
174 rdf:type schema:MonetaryGrant
175 sg:person.01041130537.56 schema:affiliation N2f3e402d1d164d2b9b6778a911fb47e8
176 schema:familyName Weisbrod
177 schema:givenName Allison B
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041130537.56
179 rdf:type schema:Person
180 sg:person.011331054577.30 schema:affiliation N766c5d22f136469c88f6b56e84feb81e
181 schema:familyName Summers
182 schema:givenName Ronald M
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30
184 rdf:type schema:Person
185 sg:person.012366760067.46 schema:affiliation N0d08e881d4a14772807ed04d15ee082d
186 schema:familyName Yao
187 schema:givenName Jianhua
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46
189 rdf:type schema:Person
190 sg:person.016642134744.11 schema:affiliation N18d2580361794195ab5ed2185e18ce0f
191 schema:familyName Liu
192 schema:givenName Yixun
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016642134744.11
194 rdf:type schema:Person
195 sg:person.0724132322.08 schema:affiliation N8e1524f3dfc1417c8c9ea3c3908d8153
196 schema:familyName Kebebew
197 schema:givenName Electron
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724132322.08
199 rdf:type schema:Person
200 sg:person.0744172402.34 schema:affiliation N223ea67341544de58373bf1df14e8ac6
201 schema:familyName Sadowski
202 schema:givenName Samira M
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744172402.34
204 rdf:type schema:Person
205 sg:pub.10.1007/s00285-007-0139-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012292263
206 https://doi.org/10.1007/s00285-007-0139-x
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/35098076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041527409
209 https://doi.org/10.1038/35098076
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.cell.2011.11.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026122620
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/s0969-8051(00)00155-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046439845
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1046/j.1365-2184.2000.00177.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029104932
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1109/tmi.2005.857217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694777
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1148/radiol.12112458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029817962
220 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...