Classification of 3-D Point Cloud Data that Includes Line and Frame Objects on the Basis of Geometrical Features and the ... View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Kazunori Ohno , Takahiro Suzuki , Kazuyuki Higashi , Masanobu Tsubota , Eijiro Takeuchi , Satoshi Tadokoro

ABSTRACT

The authors aim at classification of 3-D point cloud data at disaster environment. In this paper, we proposed a method of classification for 3-D point cloud data using geometrical features and the pass rate of laser rays. Line and frame objects often trap robots, which causes the damages of sensors, motors, mechanical parts etc. at remote operation. Using our proposed method, the line and frame objects can be classified from the 3-D point cloud data. Key-point is use of the pass rate of laser rays. It is confirm that recognition rate of line and frame objects can be increased using the pass rate of laser rays. In addition, it is confirm that the proposed classification method works in the real scene. A training facility of Japan fireman department is used for the evaluation test because it is similar to the real disaster scene comparing the laboratory’s test field. More... »

PAGES

527-540

Book

TITLE

Field and Service Robotics

ISBN

978-3-642-40685-0
978-3-642-40686-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-40686-7_35

DOI

http://dx.doi.org/10.1007/978-3-642-40686-7_35

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028233730


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "JST/Tohoku University, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohno", 
        "givenName": "Kazunori", 
        "id": "sg:person.012215060513.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012215060513.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Tohoku University, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suzuki", 
        "givenName": "Takahiro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Tohoku University, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Higashi", 
        "givenName": "Kazuyuki", 
        "id": "sg:person.014710162301.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014710162301.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Tohoku University, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsubota", 
        "givenName": "Masanobu", 
        "id": "sg:person.07600052101.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07600052101.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Tohoku University, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takeuchi", 
        "givenName": "Eijiro", 
        "id": "sg:person.011770373501.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011770373501.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Tohoku University, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tadokoro", 
        "givenName": "Satoshi", 
        "id": "sg:person.013454033251.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454033251.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/34.765655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcg.1987.276986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061391074"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "The authors aim at classification of 3-D point cloud data at disaster environment. In this paper, we proposed a method of classification for 3-D point cloud data using geometrical features and the pass rate of laser rays. Line and frame objects often trap robots, which causes the damages of sensors, motors, mechanical parts etc. at remote operation. Using our proposed method, the line and frame objects can be classified from the 3-D point cloud data. Key-point is use of the pass rate of laser rays. It is confirm that recognition rate of line and frame objects can be increased using the pass rate of laser rays. In addition, it is confirm that the proposed classification method works in the real scene. A training facility of Japan fireman department is used for the evaluation test because it is similar to the real disaster scene comparing the laboratory\u2019s test field.", 
    "editor": [
      {
        "familyName": "Yoshida", 
        "givenName": "Kazuya", 
        "type": "Person"
      }, 
      {
        "familyName": "Tadokoro", 
        "givenName": "Satoshi", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-40686-7_35", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-40685-0", 
        "978-3-642-40686-7"
      ], 
      "name": "Field and Service Robotics", 
      "type": "Book"
    }, 
    "name": "Classification of 3-D Point Cloud Data that Includes Line and Frame Objects on the Basis of Geometrical Features and the Pass Rate of Laser Rays", 
    "pagination": "527-540", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-40686-7_35"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "867fc046225275b0add3dfca3ec20bb2ac6dd5b0a77e1e3c8a05b37404b6a249"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028233730"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-40686-7_35", 
      "https://app.dimensions.ai/details/publication/pub.1028233730"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000260.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-40686-7_35"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40686-7_35'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40686-7_35'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40686-7_35'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40686-7_35'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-40686-7_35 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne36e474f64ff4434a54085851d6a4a95
4 schema:citation https://doi.org/10.1109/34.765655
5 https://doi.org/10.1109/mcg.1987.276986
6 schema:datePublished 2014
7 schema:datePublishedReg 2014-01-01
8 schema:description The authors aim at classification of 3-D point cloud data at disaster environment. In this paper, we proposed a method of classification for 3-D point cloud data using geometrical features and the pass rate of laser rays. Line and frame objects often trap robots, which causes the damages of sensors, motors, mechanical parts etc. at remote operation. Using our proposed method, the line and frame objects can be classified from the 3-D point cloud data. Key-point is use of the pass rate of laser rays. It is confirm that recognition rate of line and frame objects can be increased using the pass rate of laser rays. In addition, it is confirm that the proposed classification method works in the real scene. A training facility of Japan fireman department is used for the evaluation test because it is similar to the real disaster scene comparing the laboratory’s test field.
9 schema:editor N2fd9de2f3cc142e5925604f2ebfd5534
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf Nbe0748e5d6c14def8946fe2984c063f6
14 schema:name Classification of 3-D Point Cloud Data that Includes Line and Frame Objects on the Basis of Geometrical Features and the Pass Rate of Laser Rays
15 schema:pagination 527-540
16 schema:productId N0d827a5f31224d23a6a5d6ead5d31288
17 N17a35526cf24477ea4a508f9057c9c72
18 Nf89eb2309ff749b2a3000330573eaa1e
19 schema:publisher N530bfa8d7a4a469b8862c348421c6eb2
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028233730
21 https://doi.org/10.1007/978-3-642-40686-7_35
22 schema:sdDatePublished 2019-04-15T13:28
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N14e569981a8d4432a15fb97c53e1ab67
25 schema:url http://link.springer.com/10.1007/978-3-642-40686-7_35
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N064150ee103d41c3b08f9e142e885e56 rdf:first sg:person.011770373501.20
30 rdf:rest N5482cb1c5d1e47869654745594c92f9a
31 N0d827a5f31224d23a6a5d6ead5d31288 schema:name doi
32 schema:value 10.1007/978-3-642-40686-7_35
33 rdf:type schema:PropertyValue
34 N14e569981a8d4432a15fb97c53e1ab67 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N17a35526cf24477ea4a508f9057c9c72 schema:name readcube_id
37 schema:value 867fc046225275b0add3dfca3ec20bb2ac6dd5b0a77e1e3c8a05b37404b6a249
38 rdf:type schema:PropertyValue
39 N2fd9de2f3cc142e5925604f2ebfd5534 rdf:first N675a936eb85644328ca7b17f61cbf1e6
40 rdf:rest Ne85e5178ca3c4b5380b1d9ddf647db0a
41 N500f5869267c46b4a966292c5a63d256 rdf:first sg:person.07600052101.65
42 rdf:rest N064150ee103d41c3b08f9e142e885e56
43 N530bfa8d7a4a469b8862c348421c6eb2 schema:location Berlin, Heidelberg
44 schema:name Springer Berlin Heidelberg
45 rdf:type schema:Organisation
46 N5482cb1c5d1e47869654745594c92f9a rdf:first sg:person.013454033251.77
47 rdf:rest rdf:nil
48 N675a936eb85644328ca7b17f61cbf1e6 schema:familyName Yoshida
49 schema:givenName Kazuya
50 rdf:type schema:Person
51 N90f204d55b6843338b50e349a6907254 rdf:first Na2d60d0810954758a7d76059b7a385d9
52 rdf:rest N9ea1dc1bc39641148a4fb9950a85e72f
53 N9ea1dc1bc39641148a4fb9950a85e72f rdf:first sg:person.014710162301.32
54 rdf:rest N500f5869267c46b4a966292c5a63d256
55 Na2d60d0810954758a7d76059b7a385d9 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
56 schema:familyName Suzuki
57 schema:givenName Takahiro
58 rdf:type schema:Person
59 Nbe0748e5d6c14def8946fe2984c063f6 schema:isbn 978-3-642-40685-0
60 978-3-642-40686-7
61 schema:name Field and Service Robotics
62 rdf:type schema:Book
63 Ndb201b13632a4f1891e97588ae9e7a2d schema:familyName Tadokoro
64 schema:givenName Satoshi
65 rdf:type schema:Person
66 Ne36e474f64ff4434a54085851d6a4a95 rdf:first sg:person.012215060513.07
67 rdf:rest N90f204d55b6843338b50e349a6907254
68 Ne85e5178ca3c4b5380b1d9ddf647db0a rdf:first Ndb201b13632a4f1891e97588ae9e7a2d
69 rdf:rest rdf:nil
70 Nf89eb2309ff749b2a3000330573eaa1e schema:name dimensions_id
71 schema:value pub.1028233730
72 rdf:type schema:PropertyValue
73 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
74 schema:name Information and Computing Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
77 schema:name Artificial Intelligence and Image Processing
78 rdf:type schema:DefinedTerm
79 sg:person.011770373501.20 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
80 schema:familyName Takeuchi
81 schema:givenName Eijiro
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011770373501.20
83 rdf:type schema:Person
84 sg:person.012215060513.07 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
85 schema:familyName Ohno
86 schema:givenName Kazunori
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012215060513.07
88 rdf:type schema:Person
89 sg:person.013454033251.77 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
90 schema:familyName Tadokoro
91 schema:givenName Satoshi
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454033251.77
93 rdf:type schema:Person
94 sg:person.014710162301.32 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
95 schema:familyName Higashi
96 schema:givenName Kazuyuki
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014710162301.32
98 rdf:type schema:Person
99 sg:person.07600052101.65 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
100 schema:familyName Tsubota
101 schema:givenName Masanobu
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07600052101.65
103 rdf:type schema:Person
104 https://doi.org/10.1109/34.765655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156951
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1109/mcg.1987.276986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061391074
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.69566.3a schema:alternateName Tohoku University
109 schema:name JST/Tohoku University, Sendai, Japan
110 Tohoku University, Sendai, Japan
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...