A Tabletop System Using Infrared Image Recognition for Multi-user Identification View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2013

AUTHORS

Shota Suto , Susumu Shibusawa

ABSTRACT

Many tabletop systems have been developed to facilitate face-to-face collaboration and work at small meetings. These systems often require users to attach sensors to their bodies to identify their positions, but attaching a sensor to one’s body can be bothersome and annoying, and user position and posture may be restricted depending on where the sensor is attached. We have proposed a technique for estimating user position in a tabletop system by image recognition and implemented a tabletop system having a user position identification function incorporating the proposed technique. This technique first obtains touch points and hand-area information from touch operations performed by the user, and establishes an association between the touch points and hand from those positional relationships. Since the direction in which a hand is extended can be derived from that hand’s touch information, the position of the user of the touch points belonging to that hand can be estimated. As part of this study, we also implemented a photo-object manipulation application, which has a function for orienting a photo object to face the user based on the results of the above user-position estimation technique. We performed an experiment to evaluate the position identification rate, and found that the proposed technique could identify user position with high accuracy. More... »

PAGES

55-62

References to SciGraph publications

Book

TITLE

Human-Computer Interaction – INTERACT 2013

ISBN

978-3-642-40479-5
978-3-642-40480-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-40480-1_4

DOI

http://dx.doi.org/10.1007/978-3-642-40480-1_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050104893


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ibaraki University", 
          "id": "https://www.grid.ac/institutes/grid.410773.6", 
          "name": [
            "Graduate School of Science and Engineering, Ibaraki University, Nakanarusawa 4-12-1, Hitachi\u00a0Ibaraki, 316-8511, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suto", 
        "givenName": "Shota", 
        "id": "sg:person.07447304053.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07447304053.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ibaraki University", 
          "id": "https://www.grid.ac/institutes/grid.410773.6", 
          "name": [
            "Dept. of Computer and Information Sciences, Ibaraki University, Nakanarusawa 4-12-1, Hitachi\u00a0Ibaraki, 316-8511, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shibusawa", 
        "givenName": "Susumu", 
        "id": "sg:person.07726250550.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07726250550.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1935701.1935778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002667615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11941354_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027820016", 
          "https://doi.org/10.1007/11941354_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11941354_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027820016", 
          "https://doi.org/10.1007/11941354_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/502348.502389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043809726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2047196.2047240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046084051"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Many tabletop systems have been developed to facilitate face-to-face collaboration and work at small meetings. These systems often require users to attach sensors to their bodies to identify their positions, but attaching a sensor to one\u2019s body can be bothersome and annoying, and user position and posture may be restricted depending on where the sensor is attached. We have proposed a technique for estimating user position in a tabletop system by image recognition and implemented a tabletop system having a user position identification function incorporating the proposed technique. This technique first obtains touch points and hand-area information from touch operations performed by the user, and establishes an association between the touch points and hand from those positional relationships. Since the direction in which a hand is extended can be derived from that hand\u2019s touch information, the position of the user of the touch points belonging to that hand can be estimated. As part of this study, we also implemented a photo-object manipulation application, which has a function for orienting a photo object to face the user based on the results of the above user-position estimation technique. We performed an experiment to evaluate the position identification rate, and found that the proposed technique could identify user position with high accuracy.", 
    "editor": [
      {
        "familyName": "Kotz\u00e9", 
        "givenName": "Paula", 
        "type": "Person"
      }, 
      {
        "familyName": "Marsden", 
        "givenName": "Gary", 
        "type": "Person"
      }, 
      {
        "familyName": "Lindgaard", 
        "givenName": "Gitte", 
        "type": "Person"
      }, 
      {
        "familyName": "Wesson", 
        "givenName": "Janet", 
        "type": "Person"
      }, 
      {
        "familyName": "Winckler", 
        "givenName": "Marco", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-40480-1_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-40479-5", 
        "978-3-642-40480-1"
      ], 
      "name": "Human-Computer Interaction \u2013 INTERACT 2013", 
      "type": "Book"
    }, 
    "name": "A Tabletop System Using Infrared Image Recognition for Multi-user Identification", 
    "pagination": "55-62", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-40480-1_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eeaf507ac957253a7a7cc8e24988f84c7b96598161890b95cdb6cd08ec099b2c"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050104893"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-40480-1_4", 
      "https://app.dimensions.ai/details/publication/pub.1050104893"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000086.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-40480-1_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40480-1_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40480-1_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40480-1_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40480-1_4'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-40480-1_4 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nc8b910ca44784aa090055e2b720d1e53
4 schema:citation sg:pub.10.1007/11941354_20
5 https://doi.org/10.1145/1935701.1935778
6 https://doi.org/10.1145/2047196.2047240
7 https://doi.org/10.1145/502348.502389
8 schema:datePublished 2013
9 schema:datePublishedReg 2013-01-01
10 schema:description Many tabletop systems have been developed to facilitate face-to-face collaboration and work at small meetings. These systems often require users to attach sensors to their bodies to identify their positions, but attaching a sensor to one’s body can be bothersome and annoying, and user position and posture may be restricted depending on where the sensor is attached. We have proposed a technique for estimating user position in a tabletop system by image recognition and implemented a tabletop system having a user position identification function incorporating the proposed technique. This technique first obtains touch points and hand-area information from touch operations performed by the user, and establishes an association between the touch points and hand from those positional relationships. Since the direction in which a hand is extended can be derived from that hand’s touch information, the position of the user of the touch points belonging to that hand can be estimated. As part of this study, we also implemented a photo-object manipulation application, which has a function for orienting a photo object to face the user based on the results of the above user-position estimation technique. We performed an experiment to evaluate the position identification rate, and found that the proposed technique could identify user position with high accuracy.
11 schema:editor N27cae57c47874aa89eaa62de67ea9bee
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N7a74758cc61e421bbba29aa5ae0e781c
16 schema:name A Tabletop System Using Infrared Image Recognition for Multi-user Identification
17 schema:pagination 55-62
18 schema:productId N04912f57d36744c1a34b515cd0219641
19 N09f432974232443d8d4b6b0cff6ddce2
20 N268573cc17674fa38f976f51aea7a7d2
21 schema:publisher N8262d75dee8e4568b7822d977344a89c
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050104893
23 https://doi.org/10.1007/978-3-642-40480-1_4
24 schema:sdDatePublished 2019-04-15T20:52
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nfba3618c795f467fa2136491c082bcb3
27 schema:url http://link.springer.com/10.1007/978-3-642-40480-1_4
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N04912f57d36744c1a34b515cd0219641 schema:name doi
32 schema:value 10.1007/978-3-642-40480-1_4
33 rdf:type schema:PropertyValue
34 N09f432974232443d8d4b6b0cff6ddce2 schema:name dimensions_id
35 schema:value pub.1050104893
36 rdf:type schema:PropertyValue
37 N268573cc17674fa38f976f51aea7a7d2 schema:name readcube_id
38 schema:value eeaf507ac957253a7a7cc8e24988f84c7b96598161890b95cdb6cd08ec099b2c
39 rdf:type schema:PropertyValue
40 N27cae57c47874aa89eaa62de67ea9bee rdf:first N7aefd4accf1b47b493201e69e1368517
41 rdf:rest N82e188bb140a40b8b6e49675f18842e0
42 N3ebc2a6f219d4fe2afd11b1aa285c616 rdf:first N55de814441f74430bb45689af0d9211d
43 rdf:rest rdf:nil
44 N547b0ede4cab4d9d88efcb82555b7a0d schema:familyName Lindgaard
45 schema:givenName Gitte
46 rdf:type schema:Person
47 N55de814441f74430bb45689af0d9211d schema:familyName Winckler
48 schema:givenName Marco
49 rdf:type schema:Person
50 N5ff1e128cf434532907a044f4ddaadfe rdf:first Nde6ff6ee2fd146ed89eaf4347605d8c4
51 rdf:rest N3ebc2a6f219d4fe2afd11b1aa285c616
52 N73cda70569b946ffa6f60774efbc83e8 rdf:first sg:person.07726250550.37
53 rdf:rest rdf:nil
54 N7a74758cc61e421bbba29aa5ae0e781c schema:isbn 978-3-642-40479-5
55 978-3-642-40480-1
56 schema:name Human-Computer Interaction – INTERACT 2013
57 rdf:type schema:Book
58 N7aefd4accf1b47b493201e69e1368517 schema:familyName Kotzé
59 schema:givenName Paula
60 rdf:type schema:Person
61 N8262d75dee8e4568b7822d977344a89c schema:location Berlin, Heidelberg
62 schema:name Springer Berlin Heidelberg
63 rdf:type schema:Organisation
64 N82e188bb140a40b8b6e49675f18842e0 rdf:first Nc4d63db3e74c4609b796139b45aaf8f1
65 rdf:rest Nc8c3470b8bef46b08ee247b7e39a3676
66 Nc4d63db3e74c4609b796139b45aaf8f1 schema:familyName Marsden
67 schema:givenName Gary
68 rdf:type schema:Person
69 Nc8b910ca44784aa090055e2b720d1e53 rdf:first sg:person.07447304053.62
70 rdf:rest N73cda70569b946ffa6f60774efbc83e8
71 Nc8c3470b8bef46b08ee247b7e39a3676 rdf:first N547b0ede4cab4d9d88efcb82555b7a0d
72 rdf:rest N5ff1e128cf434532907a044f4ddaadfe
73 Nde6ff6ee2fd146ed89eaf4347605d8c4 schema:familyName Wesson
74 schema:givenName Janet
75 rdf:type schema:Person
76 Nfba3618c795f467fa2136491c082bcb3 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information and Computing Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
82 schema:name Information Systems
83 rdf:type schema:DefinedTerm
84 sg:person.07447304053.62 schema:affiliation https://www.grid.ac/institutes/grid.410773.6
85 schema:familyName Suto
86 schema:givenName Shota
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07447304053.62
88 rdf:type schema:Person
89 sg:person.07726250550.37 schema:affiliation https://www.grid.ac/institutes/grid.410773.6
90 schema:familyName Shibusawa
91 schema:givenName Susumu
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07726250550.37
93 rdf:type schema:Person
94 sg:pub.10.1007/11941354_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027820016
95 https://doi.org/10.1007/11941354_20
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1145/1935701.1935778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002667615
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1145/2047196.2047240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046084051
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1145/502348.502389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043809726
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.410773.6 schema:alternateName Ibaraki University
104 schema:name Dept. of Computer and Information Sciences, Ibaraki University, Nakanarusawa 4-12-1, Hitachi Ibaraki, 316-8511, Japan
105 Graduate School of Science and Engineering, Ibaraki University, Nakanarusawa 4-12-1, Hitachi Ibaraki, 316-8511, Japan
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...