Probabilistic Inundation Forecasting View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

A. Mueller , C. Baugh , P. Bates , F. Pappenberger

ABSTRACT

Many existing operational hydrological ensemble forecasting systems only produce forecasts of river discharge. It is possible to convert discharge forecasts into inundation extents, in particular because there are well-established tools for the estimation of inundation hazard. The basic components of the modeling framework from which to produce inundation forecasts are: (1) meteorological forcing; (2) a hydrological model; (3) a hydraulic model; and; (4) a methodology to derive probabilistic inundation maps. We perform all those steps using the example of the 2013 River Elbe event. We validate the maps of flooding probability against the observations. We stress the importance of the spatial discretization of the digital elevation maps (DEM) and the influence of the resolution of the flood defense topographic features. This study shows that up to 80% of the flooded area along the Elbe in 2013 could have been forecasted to inundate 7 days in advance, using the probabilistic modeling framework proposed. More... »

PAGES

1-14

References to SciGraph publications

Book

TITLE

Handbook of Hydrometeorological Ensemble Forecasting

ISBN

978-3-642-40457-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-40457-3_59-1

DOI

http://dx.doi.org/10.1007/978-3-642-40457-3_59-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045239570


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Reading", 
          "id": "https://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "Geography and Environmental Science Department, University of Reading and European Centre for Medium-Range Forecast (ECMWF)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mueller", 
        "givenName": "A.", 
        "id": "sg:person.015054574753.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015054574753.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "European Centre for Medium-Range Forecast (ECMWF)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baugh", 
        "givenName": "C.", 
        "id": "sg:person.013315460125.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013315460125.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bristol", 
          "id": "https://www.grid.ac/institutes/grid.5337.2", 
          "name": [
            "Department of Geography, School of Geographical Sciences, University of Bristol"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bates", 
        "givenName": "P.", 
        "id": "sg:person.01356020400.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356020400.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium-Range Weather Forecasts"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pappenberger", 
        "givenName": "F.", 
        "id": "sg:person.013576170771.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576170771.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.5194/hess-17-4389-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002285630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-17-2219-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004146591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsci.2012.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004824853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-012-0483-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005571332", 
          "https://doi.org/10.1007/s11069-012-0483-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/waf-d-10-05032.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007498903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2009.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009718309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14358/pers.72.3.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012724910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-9-381-2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018105809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-9-381-2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018105809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wrcr.20366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026943367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-17-1161-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027046019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.7772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028740736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13658810802549154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029611388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.9419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029650764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15715124.2011.625359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030524756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-16-4143-2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030870613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2007.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037025634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2010.03.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040151105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2012wr012514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042129877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(00)00278-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045642718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wrcr.20521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049841898"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "Many existing operational hydrological ensemble forecasting systems only produce forecasts of river discharge. It is possible to convert discharge forecasts into inundation extents, in particular because there are well-established tools for the estimation of inundation hazard. The basic components of the modeling framework from which to produce inundation forecasts are: (1) meteorological forcing; (2) a hydrological model; (3) a hydraulic model; and; (4) a methodology to derive probabilistic inundation maps. We perform all those steps using the example of the 2013 River Elbe event. We validate the maps of flooding probability against the observations. We stress the importance of the spatial discretization of the digital elevation maps (DEM) and the influence of the resolution of the flood defense topographic features. This study shows that up to 80% of the flooded area along the Elbe in 2013 could have been forecasted to inundate 7 days in advance, using the probabilistic modeling framework proposed.", 
    "editor": [
      {
        "familyName": "Duan", 
        "givenName": "Qingyun", 
        "type": "Person"
      }, 
      {
        "familyName": "Pappenberger", 
        "givenName": "Florian", 
        "type": "Person"
      }, 
      {
        "familyName": "Thielen", 
        "givenName": "Jutta", 
        "type": "Person"
      }, 
      {
        "familyName": "Wood", 
        "givenName": "Andy", 
        "type": "Person"
      }, 
      {
        "familyName": "Cloke", 
        "givenName": "Hannah L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Schaake", 
        "givenName": "John C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-40457-3_59-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-40457-3"
      ], 
      "name": "Handbook of Hydrometeorological Ensemble Forecasting", 
      "type": "Book"
    }, 
    "name": "Probabilistic Inundation Forecasting", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-40457-3_59-1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d77df7da79f58d4384f762800c50e3723554dedc6269a770327e45ed62d56b0a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045239570"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-40457-3_59-1", 
      "https://app.dimensions.ai/details/publication/pub.1045239570"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000323.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-40457-3_59-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40457-3_59-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40457-3_59-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40457-3_59-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40457-3_59-1'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      23 PREDICATES      47 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-40457-3_59-1 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N65c058e7b1854a3c9d45f77b3c248d89
4 schema:citation sg:pub.10.1007/s11069-012-0483-z
5 https://doi.org/10.1002/hyp.7772
6 https://doi.org/10.1002/hyp.9419
7 https://doi.org/10.1002/wrcr.20366
8 https://doi.org/10.1002/wrcr.20521
9 https://doi.org/10.1016/j.advwatres.2007.02.005
10 https://doi.org/10.1016/j.envsci.2012.01.008
11 https://doi.org/10.1016/j.jhydrol.2009.06.005
12 https://doi.org/10.1016/j.jhydrol.2010.03.027
13 https://doi.org/10.1016/s0022-1694(00)00278-x
14 https://doi.org/10.1029/2012wr012514
15 https://doi.org/10.1080/13658810802549154
16 https://doi.org/10.1080/15715124.2011.625359
17 https://doi.org/10.1175/waf-d-10-05032.1
18 https://doi.org/10.14358/pers.72.3.249
19 https://doi.org/10.5194/hess-16-4143-2012
20 https://doi.org/10.5194/hess-17-1161-2013
21 https://doi.org/10.5194/hess-17-2219-2013
22 https://doi.org/10.5194/hess-17-4389-2013
23 https://doi.org/10.5194/hess-9-381-2005
24 schema:datePublished 2016
25 schema:datePublishedReg 2016-01-01
26 schema:description Many existing operational hydrological ensemble forecasting systems only produce forecasts of river discharge. It is possible to convert discharge forecasts into inundation extents, in particular because there are well-established tools for the estimation of inundation hazard. The basic components of the modeling framework from which to produce inundation forecasts are: (1) meteorological forcing; (2) a hydrological model; (3) a hydraulic model; and; (4) a methodology to derive probabilistic inundation maps. We perform all those steps using the example of the 2013 River Elbe event. We validate the maps of flooding probability against the observations. We stress the importance of the spatial discretization of the digital elevation maps (DEM) and the influence of the resolution of the flood defense topographic features. This study shows that up to 80% of the flooded area along the Elbe in 2013 could have been forecasted to inundate 7 days in advance, using the probabilistic modeling framework proposed.
27 schema:editor Nbf50206cfd994d79aae9d46e28e8d612
28 schema:genre chapter
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N29ee16d4ab7d44b5ba83689e590f9ebe
32 schema:name Probabilistic Inundation Forecasting
33 schema:pagination 1-14
34 schema:productId N36c7e10c02da4f93b5df83ebd654e66e
35 Nc2131739a43645b5934c78e3b8af42af
36 Nd79d5bc030c44caaa2e3bd3371b5b03f
37 schema:publisher Nacd426caea784ecaa1b3aabba7fe2a43
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045239570
39 https://doi.org/10.1007/978-3-642-40457-3_59-1
40 schema:sdDatePublished 2019-04-15T19:18
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nd1e6a999f3844075bd164fc49dd0bb98
43 schema:url http://link.springer.com/10.1007/978-3-642-40457-3_59-1
44 sgo:license sg:explorer/license/
45 sgo:sdDataset chapters
46 rdf:type schema:Chapter
47 N047ae5c864d448e0be1067294edb90ca schema:familyName Pappenberger
48 schema:givenName Florian
49 rdf:type schema:Person
50 N148052705be649dc831cdce158a265bd rdf:first sg:person.01356020400.20
51 rdf:rest N240f43bd24fe418d864f0a09aecefb16
52 N174ef1406753436fb1de1e9575333615 rdf:first N7c136edcf344437494315e945ba4443d
53 rdf:rest Nebf0956954394dd397146c8e1416e922
54 N19029445410d415c89eac9ad88c397dc schema:familyName Schaake
55 schema:givenName John C.
56 rdf:type schema:Person
57 N240f43bd24fe418d864f0a09aecefb16 rdf:first sg:person.013576170771.53
58 rdf:rest rdf:nil
59 N248eff27d299414a95ff8b79cccaeedb rdf:first sg:person.013315460125.40
60 rdf:rest N148052705be649dc831cdce158a265bd
61 N29ee16d4ab7d44b5ba83689e590f9ebe schema:isbn 978-3-642-40457-3
62 schema:name Handbook of Hydrometeorological Ensemble Forecasting
63 rdf:type schema:Book
64 N36c7e10c02da4f93b5df83ebd654e66e schema:name readcube_id
65 schema:value d77df7da79f58d4384f762800c50e3723554dedc6269a770327e45ed62d56b0a
66 rdf:type schema:PropertyValue
67 N56de412b45a44201aabd3dc4d258211a rdf:first N047ae5c864d448e0be1067294edb90ca
68 rdf:rest N642351f394034aaea7c7e9c45be5b08f
69 N642351f394034aaea7c7e9c45be5b08f rdf:first Nee67054457f44bc381bdc5e73c4dc422
70 rdf:rest N90416c59244d45d497fe0a98a0959e20
71 N65c058e7b1854a3c9d45f77b3c248d89 rdf:first sg:person.015054574753.28
72 rdf:rest N248eff27d299414a95ff8b79cccaeedb
73 N7638205a7e0440e2bd2775c1490cde19 schema:familyName Duan
74 schema:givenName Qingyun
75 rdf:type schema:Person
76 N7c136edcf344437494315e945ba4443d schema:familyName Cloke
77 schema:givenName Hannah L.
78 rdf:type schema:Person
79 N90416c59244d45d497fe0a98a0959e20 rdf:first N95279560cd214067a19925be03c7e1a0
80 rdf:rest N174ef1406753436fb1de1e9575333615
81 N95279560cd214067a19925be03c7e1a0 schema:familyName Wood
82 schema:givenName Andy
83 rdf:type schema:Person
84 Nacd426caea784ecaa1b3aabba7fe2a43 schema:location Berlin, Heidelberg
85 schema:name Springer Berlin Heidelberg
86 rdf:type schema:Organisation
87 Nbf50206cfd994d79aae9d46e28e8d612 rdf:first N7638205a7e0440e2bd2775c1490cde19
88 rdf:rest N56de412b45a44201aabd3dc4d258211a
89 Nc2131739a43645b5934c78e3b8af42af schema:name dimensions_id
90 schema:value pub.1045239570
91 rdf:type schema:PropertyValue
92 Nd1e6a999f3844075bd164fc49dd0bb98 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Nd79d5bc030c44caaa2e3bd3371b5b03f schema:name doi
95 schema:value 10.1007/978-3-642-40457-3_59-1
96 rdf:type schema:PropertyValue
97 Ne7076d134b024d56a4fec12b714ec746 schema:name European Centre for Medium-Range Forecast (ECMWF)
98 rdf:type schema:Organization
99 Nebf0956954394dd397146c8e1416e922 rdf:first N19029445410d415c89eac9ad88c397dc
100 rdf:rest rdf:nil
101 Nee67054457f44bc381bdc5e73c4dc422 schema:familyName Thielen
102 schema:givenName Jutta
103 rdf:type schema:Person
104 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
105 schema:name Earth Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
108 schema:name Physical Geography and Environmental Geoscience
109 rdf:type schema:DefinedTerm
110 sg:person.013315460125.40 schema:affiliation Ne7076d134b024d56a4fec12b714ec746
111 schema:familyName Baugh
112 schema:givenName C.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013315460125.40
114 rdf:type schema:Person
115 sg:person.01356020400.20 schema:affiliation https://www.grid.ac/institutes/grid.5337.2
116 schema:familyName Bates
117 schema:givenName P.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356020400.20
119 rdf:type schema:Person
120 sg:person.013576170771.53 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
121 schema:familyName Pappenberger
122 schema:givenName F.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576170771.53
124 rdf:type schema:Person
125 sg:person.015054574753.28 schema:affiliation https://www.grid.ac/institutes/grid.9435.b
126 schema:familyName Mueller
127 schema:givenName A.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015054574753.28
129 rdf:type schema:Person
130 sg:pub.10.1007/s11069-012-0483-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1005571332
131 https://doi.org/10.1007/s11069-012-0483-z
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1002/hyp.7772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028740736
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/hyp.9419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029650764
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/wrcr.20366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026943367
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/wrcr.20521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049841898
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.advwatres.2007.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037025634
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.envsci.2012.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004824853
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jhydrol.2009.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009718309
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.jhydrol.2010.03.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040151105
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s0022-1694(00)00278-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045642718
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1029/2012wr012514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042129877
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1080/13658810802549154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029611388
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1080/15715124.2011.625359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030524756
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1175/waf-d-10-05032.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007498903
158 rdf:type schema:CreativeWork
159 https://doi.org/10.14358/pers.72.3.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012724910
160 rdf:type schema:CreativeWork
161 https://doi.org/10.5194/hess-16-4143-2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030870613
162 rdf:type schema:CreativeWork
163 https://doi.org/10.5194/hess-17-1161-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027046019
164 rdf:type schema:CreativeWork
165 https://doi.org/10.5194/hess-17-2219-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004146591
166 rdf:type schema:CreativeWork
167 https://doi.org/10.5194/hess-17-4389-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002285630
168 rdf:type schema:CreativeWork
169 https://doi.org/10.5194/hess-9-381-2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018105809
170 rdf:type schema:CreativeWork
171 https://www.grid.ac/institutes/grid.42781.38 schema:alternateName European Centre for Medium-Range Weather Forecasts
172 schema:name European Centre for Medium-Range Weather Forecasts
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.5337.2 schema:alternateName University of Bristol
175 schema:name Department of Geography, School of Geographical Sciences, University of Bristol
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.9435.b schema:alternateName University of Reading
178 schema:name Geography and Environmental Science Department, University of Reading and European Centre for Medium-Range Forecast (ECMWF)
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...