Soil Moisture Data Assimilation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Gabrielle Jacinthe Maria de Lannoy , Patricia de Rosnay , Rolf Helmut Reichle

ABSTRACT

Accurate knowledge of soil moisture at the continental scale is important for improving predictions of weather, agricultural productivity, and natural hazards, but observations of soil moisture at such scales are limited to indirect measurements, either obtained through satellite remote sensing or from meteorological networks. Land surface models simulate soil moisture processes, using observation-based meteorological forcing data, and auxiliary information about soil, terrain, and vegetation characteristics. Enhanced estimates of soil moisture and other land surface variables, along with their uncertainty, can be obtained by assimilating observations of soil moisture into land surface models. These assimilation results are of direct relevance for the initialization of hydrometeorological ensemble forecasting systems. The success of the assimilation depends on the choice of the assimilation technique, the nature of the model and the assimilated observations, and, most importantly, the characterization of model and observation error. Systematic differences between satellite-based microwave observations or satellite-retrieved soil moisture and their simulated counterparts require special attention. Other challenges include inferring root-zone soil moisture information from observations that pertain to a shallow surface soil layer, propagating information to unobserved areas and downscaling of coarse information to finer-scale soil moisture estimates. This chapter summarizes state-of-the-art solutions to these issues with conceptual data assimilation examples, using techniques ranging from simplified optimal interpolation to spatial ensemble Kalman filtering. In addition, operational soil moisture assimilation systems are discussed that support numerical weather prediction at ECMWF and provide value-added soil moisture products for the NASA Soil Moisture Active Passive mission. More... »

PAGES

1-43

Book

TITLE

Handbook of Hydrometeorological Ensemble Forecasting

ISBN

978-3-642-40457-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-40457-3_32-1

DOI

http://dx.doi.org/10.1007/978-3-642-40457-3_32-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028315625


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "NASA Goddard Space Flight Center, Code 610.1", 
            "KU Leuven, Department of Earth and Environmental Sciences"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Lannoy", 
        "givenName": "Gabrielle Jacinthe Maria", 
        "id": "sg:person.013617447521.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013617447521.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Data Assimilation Section, European Center for Medium-Range Weather Forecasts"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Rosnay", 
        "givenName": "Patricia", 
        "id": "sg:person.015466361663.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015466361663.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "NASA Goddard Space Flight Center, Code 610.1"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reichle", 
        "givenName": "Rolf Helmut", 
        "id": "sg:person.015304034305.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015304034305.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/1520-0493(2000)128<0997:ioanas>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000828575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2013wr014550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001082862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1525-7541(2003)4<352:oiotil>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001406223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-006-0103-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002566765", 
          "https://doi.org/10.1007/s10040-006-0103-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-006-0103-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002566765", 
          "https://doi.org/10.1007/s10040-006-0103-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2007.02.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003811181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2014.07.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005607763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008jd011077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006196644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008jd011077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006196644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm-d-12-0161.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008060940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2010jhm1223.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008812694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2007jhm951.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009497096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm571.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011485241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10712-012-9207-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011918666", 
          "https://doi.org/10.1007/s10712-012-9207-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-15-2729-2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013662584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1525-7541(2003)004<1229:atiohe>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013864149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2000)013<2900:uagswd>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014779452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007gl031088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018029564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-10-05033.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018063536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2004gl020938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021512439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011gl050655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025123944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009gl037716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026734494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009gl037716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026734494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm-d-10-05000.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028612733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jc087ic13p11229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031372164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10712-013-9220-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031476177", 
          "https://doi.org/10.1007/s10712-013-9220-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hessd-10-14705-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031508508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2010bams3001.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032678557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008wr007590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033689564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005gl023623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037779750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005gl023623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037779750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000jd900327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038624265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1100217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038718082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(2002)130<0103:hdawte>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039843277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2001wr000475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040813716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-85-3-381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041244789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011jd016048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043686630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008gl035599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044930930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm525.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045746404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jhm1068.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046344899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2006.10.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051053012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005wr004334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052489717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm-d-12-092.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052603790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.2023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052782471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.134085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061160685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.295058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061161013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2010.2043032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061297229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/vzj2012.0040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069054496"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "Accurate knowledge of soil moisture at the continental scale is important for improving predictions of weather, agricultural productivity, and natural hazards, but observations of soil moisture at such scales are limited to indirect measurements, either obtained through satellite remote sensing or from meteorological networks. Land surface models simulate soil moisture processes, using observation-based meteorological forcing data, and auxiliary information about soil, terrain, and vegetation characteristics. Enhanced estimates of soil moisture and other land surface variables, along with their uncertainty, can be obtained by assimilating observations of soil moisture into land surface models. These assimilation results are of direct relevance for the initialization of hydrometeorological ensemble forecasting systems. The success of the assimilation depends on the choice of the assimilation technique, the nature of the model and the assimilated observations, and, most importantly, the characterization of model and observation error. Systematic differences between satellite-based microwave observations or satellite-retrieved soil moisture and their simulated counterparts require special attention. Other challenges include inferring root-zone soil moisture information from observations that pertain to a shallow surface soil layer, propagating information to unobserved areas and downscaling of coarse information to finer-scale soil moisture estimates. This chapter summarizes state-of-the-art solutions to these issues with conceptual data assimilation examples, using techniques ranging from simplified optimal interpolation to spatial ensemble Kalman filtering. In addition, operational soil moisture assimilation systems are discussed that support numerical weather prediction at ECMWF and provide value-added soil moisture products for the NASA Soil Moisture Active Passive mission.", 
    "editor": [
      {
        "familyName": "Duan", 
        "givenName": "Qingyun", 
        "type": "Person"
      }, 
      {
        "familyName": "Pappenberger", 
        "givenName": "Florian", 
        "type": "Person"
      }, 
      {
        "familyName": "Thielen", 
        "givenName": "Jutta", 
        "type": "Person"
      }, 
      {
        "familyName": "Wood", 
        "givenName": "Andy", 
        "type": "Person"
      }, 
      {
        "familyName": "Cloke", 
        "givenName": "Hannah L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Schaake", 
        "givenName": "John C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-40457-3_32-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-40457-3"
      ], 
      "name": "Handbook of Hydrometeorological Ensemble Forecasting", 
      "type": "Book"
    }, 
    "name": "Soil Moisture Data Assimilation", 
    "pagination": "1-43", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-40457-3_32-1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "86e3dda87f573fe4570c1672d4126773fb4416e166a6e5e350ad64dac8153e66"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028315625"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-40457-3_32-1", 
      "https://app.dimensions.ai/details/publication/pub.1028315625"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000260.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-40457-3_32-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40457-3_32-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40457-3_32-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40457-3_32-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40457-3_32-1'


 

This table displays all metadata directly associated to this object as RDF triples.

242 TRIPLES      23 PREDICATES      71 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-40457-3_32-1 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author N2875f698b90f4510af548008c8bcf5f3
4 schema:citation sg:pub.10.1007/s10040-006-0103-7
5 sg:pub.10.1007/s10712-012-9207-x
6 sg:pub.10.1007/s10712-013-9220-8
7 https://doi.org/10.1002/2013wr014550
8 https://doi.org/10.1002/qj.2023
9 https://doi.org/10.1016/j.rse.2006.10.014
10 https://doi.org/10.1016/j.rse.2007.02.039
11 https://doi.org/10.1016/j.rse.2014.07.023
12 https://doi.org/10.1029/2000jd900327
13 https://doi.org/10.1029/2001wr000475
14 https://doi.org/10.1029/2004gl020938
15 https://doi.org/10.1029/2005gl023623
16 https://doi.org/10.1029/2005wr004334
17 https://doi.org/10.1029/2007gl031088
18 https://doi.org/10.1029/2008gl035599
19 https://doi.org/10.1029/2008jd011077
20 https://doi.org/10.1029/2008wr007590
21 https://doi.org/10.1029/2009gl037716
22 https://doi.org/10.1029/2011gl050655
23 https://doi.org/10.1029/2011jd016048
24 https://doi.org/10.1029/jc087ic13p11229
25 https://doi.org/10.1109/36.134085
26 https://doi.org/10.1109/36.295058
27 https://doi.org/10.1109/jproc.2010.2043032
28 https://doi.org/10.1126/science.1100217
29 https://doi.org/10.1175/1520-0442(2000)013<2900:uagswd>2.0.co;2
30 https://doi.org/10.1175/1520-0493(2000)128<0997:ioanas>2.0.co;2
31 https://doi.org/10.1175/1520-0493(2002)130<0103:hdawte>2.0.co;2
32 https://doi.org/10.1175/1525-7541(2003)004<1229:atiohe>2.0.co;2
33 https://doi.org/10.1175/1525-7541(2003)4<352:oiotil>2.0.co;2
34 https://doi.org/10.1175/2007jhm951.1
35 https://doi.org/10.1175/2008jhm1068.1
36 https://doi.org/10.1175/2010bams3001.1
37 https://doi.org/10.1175/2010jhm1223.1
38 https://doi.org/10.1175/bams-85-3-381
39 https://doi.org/10.1175/jcli-d-10-05033.1
40 https://doi.org/10.1175/jhm-d-10-05000.1
41 https://doi.org/10.1175/jhm-d-12-0161.1
42 https://doi.org/10.1175/jhm-d-12-092.1
43 https://doi.org/10.1175/jhm525.1
44 https://doi.org/10.1175/jhm571.1
45 https://doi.org/10.2136/vzj2012.0040
46 https://doi.org/10.5194/hess-15-2729-2011
47 https://doi.org/10.5194/hessd-10-14705-2013
48 schema:datePublished 2015
49 schema:datePublishedReg 2015-01-01
50 schema:description Accurate knowledge of soil moisture at the continental scale is important for improving predictions of weather, agricultural productivity, and natural hazards, but observations of soil moisture at such scales are limited to indirect measurements, either obtained through satellite remote sensing or from meteorological networks. Land surface models simulate soil moisture processes, using observation-based meteorological forcing data, and auxiliary information about soil, terrain, and vegetation characteristics. Enhanced estimates of soil moisture and other land surface variables, along with their uncertainty, can be obtained by assimilating observations of soil moisture into land surface models. These assimilation results are of direct relevance for the initialization of hydrometeorological ensemble forecasting systems. The success of the assimilation depends on the choice of the assimilation technique, the nature of the model and the assimilated observations, and, most importantly, the characterization of model and observation error. Systematic differences between satellite-based microwave observations or satellite-retrieved soil moisture and their simulated counterparts require special attention. Other challenges include inferring root-zone soil moisture information from observations that pertain to a shallow surface soil layer, propagating information to unobserved areas and downscaling of coarse information to finer-scale soil moisture estimates. This chapter summarizes state-of-the-art solutions to these issues with conceptual data assimilation examples, using techniques ranging from simplified optimal interpolation to spatial ensemble Kalman filtering. In addition, operational soil moisture assimilation systems are discussed that support numerical weather prediction at ECMWF and provide value-added soil moisture products for the NASA Soil Moisture Active Passive mission.
51 schema:editor N05d31cc6f2674050bd2dd37f402eef44
52 schema:genre chapter
53 schema:inLanguage en
54 schema:isAccessibleForFree false
55 schema:isPartOf Ne7bdcb4b0fbd469e8fa324c7b6e16c78
56 schema:name Soil Moisture Data Assimilation
57 schema:pagination 1-43
58 schema:productId N6967030074bb4594bcbe0ca95b4b6c21
59 N82aeb4f6ec9e4cb79058374c456eaef1
60 Nd0c0cd916ea943ce87fe69dc3c13a612
61 schema:publisher Nb64cd86959194962aa7883a69396c44f
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028315625
63 https://doi.org/10.1007/978-3-642-40457-3_32-1
64 schema:sdDatePublished 2019-04-15T22:56
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N751d3ceab13a44d58b0e15edd850ca84
67 schema:url http://link.springer.com/10.1007/978-3-642-40457-3_32-1
68 sgo:license sg:explorer/license/
69 sgo:sdDataset chapters
70 rdf:type schema:Chapter
71 N00e11bab7837422cb281e9be395a3db8 rdf:first N2939a8f91f3f4235ab95f33e752552b6
72 rdf:rest rdf:nil
73 N030f0e14da764d45bdfc9cf146565c05 schema:familyName Thielen
74 schema:givenName Jutta
75 rdf:type schema:Person
76 N05d31cc6f2674050bd2dd37f402eef44 rdf:first Nd4374c3a0cff4f1cb4a7a296f90ad2c7
77 rdf:rest N5fdbe06b6cd843209f4dfec015cb6e54
78 N2875f698b90f4510af548008c8bcf5f3 rdf:first sg:person.013617447521.42
79 rdf:rest N9fb007f66969412f9d243258715831e9
80 N2939a8f91f3f4235ab95f33e752552b6 schema:familyName Schaake
81 schema:givenName John C.
82 rdf:type schema:Person
83 N2c56355226e343f2bb9f6fa991b1b06d rdf:first N379d8805f1de44a2aaa6c78484fff92e
84 rdf:rest N7349e6b3f36b4d12a0156da14192f23c
85 N34c58213dff34a9daa7c0b912b674b04 schema:name KU Leuven, Department of Earth and Environmental Sciences
86 NASA Goddard Space Flight Center, Code 610.1
87 rdf:type schema:Organization
88 N379d8805f1de44a2aaa6c78484fff92e schema:familyName Wood
89 schema:givenName Andy
90 rdf:type schema:Person
91 N5fdbe06b6cd843209f4dfec015cb6e54 rdf:first N9a8eeec97afe493197f83a85f0b5111b
92 rdf:rest Nd49bddbd96a24f828d344b857e34fbd2
93 N6471c4244d3249c0b4f24804134f5898 rdf:first sg:person.015304034305.45
94 rdf:rest rdf:nil
95 N6967030074bb4594bcbe0ca95b4b6c21 schema:name doi
96 schema:value 10.1007/978-3-642-40457-3_32-1
97 rdf:type schema:PropertyValue
98 N7349e6b3f36b4d12a0156da14192f23c rdf:first N8d18c46a85124e939f65fdf17cc5cfd7
99 rdf:rest N00e11bab7837422cb281e9be395a3db8
100 N751d3ceab13a44d58b0e15edd850ca84 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N82aeb4f6ec9e4cb79058374c456eaef1 schema:name dimensions_id
103 schema:value pub.1028315625
104 rdf:type schema:PropertyValue
105 N8d18c46a85124e939f65fdf17cc5cfd7 schema:familyName Cloke
106 schema:givenName Hannah L.
107 rdf:type schema:Person
108 N9a8eeec97afe493197f83a85f0b5111b schema:familyName Pappenberger
109 schema:givenName Florian
110 rdf:type schema:Person
111 N9fb007f66969412f9d243258715831e9 rdf:first sg:person.015466361663.40
112 rdf:rest N6471c4244d3249c0b4f24804134f5898
113 Nb5d60517531a4374892d3c559f059136 schema:name Data Assimilation Section, European Center for Medium-Range Weather Forecasts
114 rdf:type schema:Organization
115 Nb64cd86959194962aa7883a69396c44f schema:location Berlin, Heidelberg
116 schema:name Springer Berlin Heidelberg
117 rdf:type schema:Organisation
118 Nc4c172af87b64677a6b69b38acb0f230 schema:name NASA Goddard Space Flight Center, Code 610.1
119 rdf:type schema:Organization
120 Nd0c0cd916ea943ce87fe69dc3c13a612 schema:name readcube_id
121 schema:value 86e3dda87f573fe4570c1672d4126773fb4416e166a6e5e350ad64dac8153e66
122 rdf:type schema:PropertyValue
123 Nd4374c3a0cff4f1cb4a7a296f90ad2c7 schema:familyName Duan
124 schema:givenName Qingyun
125 rdf:type schema:Person
126 Nd49bddbd96a24f828d344b857e34fbd2 rdf:first N030f0e14da764d45bdfc9cf146565c05
127 rdf:rest N2c56355226e343f2bb9f6fa991b1b06d
128 Ne7bdcb4b0fbd469e8fa324c7b6e16c78 schema:isbn 978-3-642-40457-3
129 schema:name Handbook of Hydrometeorological Ensemble Forecasting
130 rdf:type schema:Book
131 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
132 schema:name Engineering
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
135 schema:name Geomatic Engineering
136 rdf:type schema:DefinedTerm
137 sg:person.013617447521.42 schema:affiliation N34c58213dff34a9daa7c0b912b674b04
138 schema:familyName de Lannoy
139 schema:givenName Gabrielle Jacinthe Maria
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013617447521.42
141 rdf:type schema:Person
142 sg:person.015304034305.45 schema:affiliation Nc4c172af87b64677a6b69b38acb0f230
143 schema:familyName Reichle
144 schema:givenName Rolf Helmut
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015304034305.45
146 rdf:type schema:Person
147 sg:person.015466361663.40 schema:affiliation Nb5d60517531a4374892d3c559f059136
148 schema:familyName de Rosnay
149 schema:givenName Patricia
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015466361663.40
151 rdf:type schema:Person
152 sg:pub.10.1007/s10040-006-0103-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002566765
153 https://doi.org/10.1007/s10040-006-0103-7
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s10712-012-9207-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011918666
156 https://doi.org/10.1007/s10712-012-9207-x
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s10712-013-9220-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031476177
159 https://doi.org/10.1007/s10712-013-9220-8
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/2013wr014550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001082862
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/qj.2023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052782471
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.rse.2006.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051053012
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.rse.2007.02.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003811181
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.rse.2014.07.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005607763
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1029/2000jd900327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038624265
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1029/2001wr000475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040813716
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1029/2004gl020938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021512439
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1029/2005gl023623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037779750
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1029/2005wr004334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052489717
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1029/2007gl031088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018029564
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1029/2008gl035599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044930930
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1029/2008jd011077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006196644
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1029/2008wr007590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033689564
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1029/2009gl037716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026734494
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1029/2011gl050655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025123944
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1029/2011jd016048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043686630
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1029/jc087ic13p11229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031372164
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/36.134085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061160685
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/36.295058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061161013
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/jproc.2010.2043032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061297229
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1126/science.1100217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038718082
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1175/1520-0442(2000)013<2900:uagswd>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014779452
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1175/1520-0493(2000)128<0997:ioanas>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000828575
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1175/1520-0493(2002)130<0103:hdawte>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039843277
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1175/1525-7541(2003)004<1229:atiohe>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013864149
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1175/1525-7541(2003)4<352:oiotil>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001406223
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1175/2007jhm951.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009497096
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1175/2008jhm1068.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046344899
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1175/2010bams3001.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032678557
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1175/2010jhm1223.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008812694
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1175/bams-85-3-381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041244789
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1175/jcli-d-10-05033.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018063536
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1175/jhm-d-10-05000.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028612733
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1175/jhm-d-12-0161.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008060940
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1175/jhm-d-12-092.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052603790
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1175/jhm525.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045746404
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1175/jhm571.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011485241
236 rdf:type schema:CreativeWork
237 https://doi.org/10.2136/vzj2012.0040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069054496
238 rdf:type schema:CreativeWork
239 https://doi.org/10.5194/hess-15-2729-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013662584
240 rdf:type schema:CreativeWork
241 https://doi.org/10.5194/hessd-10-14705-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031508508
242 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...