Towards Reliable Automatic Protein Structure Alignment View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2013

AUTHORS

Xuefeng Cui , Shuai Cheng Li , Dongbo Bu , Ming Li

ABSTRACT

A variety of methods have been proposed for structure similarity calculation, which are called structure alignment or superposition. One major shortcoming in current structure alignment algorithms is in their inherent design, which is based on local structure similarity. In this work, we propose a method to incorporate global information in obtaining optimal alignments and superpositions. Our method, when applied to optimizing the TM-score and the GDT score, produces significantly better results than current state-of-the-art protein structure alignment tools. Specifically, if the highest TM-score found by TMalign is lower than 0.6 and the highest TM-score found by one of the tested methods is higher than 0.5, there is a probability of 42% that TMalign failed to find TM-scores higher than 0.5, while the same probability is reduced to 2% if our method is used. This could significantly improve the accuracy of fold detection if the cutoff TM-score of 0.5 is used. In addition, existing structure alignment algorithms focus on structure similarity alone and simply ignore other important similarities, such as sequence similarity. Our approach has the capacity to incorporate multiple similarities into the scoring function. Results show that sequence similarity aids in finding high quality protein structure alignments that are more consistent with eye-examined alignments in HOMSTRAD. Even when structure similarity itself fails to find alignments with any consistency with eye-examined alignments, our method remains capable of finding alignments highly similar to, or even identical to, eye-examined alignments. More... »

PAGES

18-32

References to SciGraph publications

Book

TITLE

Algorithms in Bioinformatics

ISBN

978-3-642-40452-8
978-3-642-40453-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-40453-5_3

DOI

http://dx.doi.org/10.1007/978-3-642-40453-5_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044159570


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "University of Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "Xuefeng", 
        "id": "sg:person.0743012711.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743012711.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "City University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.35030.35", 
          "name": [
            "City University of Hong Kong, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Shuai Cheng", 
        "id": "sg:person.01314123720.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314123720.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bu", 
        "givenName": "Dongbo", 
        "id": "sg:person.01137000414.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137000414.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "University of Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Ming", 
        "id": "sg:person.0621576316.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621576316.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0959-440x(96)80058-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000115049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0704422105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002156726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002979620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg1086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004943838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0804-1035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006061272", 
          "https://doi.org/10.1038/nbt0804-1035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0804-1035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006061272", 
          "https://doi.org/10.1038/nbt0804-1035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006365673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560071126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006964803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.22.10915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010234644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/9.9.727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011273110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013058916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016407522", 
          "https://doi.org/10.1038/srep01448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.11.5913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017476898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.24100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018183183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019753512", 
          "https://doi.org/10.1186/1471-2105-13-259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(70)90057-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021169618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/11.9.739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023568040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0076-6879(04)83004-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026092698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026380798", 
          "https://doi.org/10.1186/1471-2105-9-556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/565196.565209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026589684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027562842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027955415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0960-9822(93)90255-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034028899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035055456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.23181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036141611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/369133.369199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037350583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.4762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039924135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.2821705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045219682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbs052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050027720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0040010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050759016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053671309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2004.11.1061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0895479801383877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062881682"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "A variety of methods have been proposed for structure similarity calculation, which are called structure alignment or superposition. One major shortcoming in current structure alignment algorithms is in their inherent design, which is based on local structure similarity. In this work, we propose a method to incorporate global information in obtaining optimal alignments and superpositions. Our method, when applied to optimizing the TM-score and the GDT score, produces significantly better results than current state-of-the-art protein structure alignment tools. Specifically, if the highest TM-score found by TMalign is lower than 0.6 and the highest TM-score found by one of the tested methods is higher than 0.5, there is a probability of 42% that TMalign failed to find TM-scores higher than 0.5, while the same probability is reduced to 2% if our method is used. This could significantly improve the accuracy of fold detection if the cutoff TM-score of 0.5 is used. In addition, existing structure alignment algorithms focus on structure similarity alone and simply ignore other important similarities, such as sequence similarity. Our approach has the capacity to incorporate multiple similarities into the scoring function. Results show that sequence similarity aids in finding high quality protein structure alignments that are more consistent with eye-examined alignments in HOMSTRAD. Even when structure similarity itself fails to find alignments with any consistency with eye-examined alignments, our method remains capable of finding alignments highly similar to, or even identical to, eye-examined alignments.", 
    "editor": [
      {
        "familyName": "Darling", 
        "givenName": "Aaron", 
        "type": "Person"
      }, 
      {
        "familyName": "Stoye", 
        "givenName": "Jens", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-40453-5_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-40452-8", 
        "978-3-642-40453-5"
      ], 
      "name": "Algorithms in Bioinformatics", 
      "type": "Book"
    }, 
    "name": "Towards Reliable Automatic Protein Structure Alignment", 
    "pagination": "18-32", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-40453-5_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d2590a1562f6fa4e1afef3a83000e95a70f75b2c48976a62fdb428054868e2cf"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044159570"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-40453-5_3", 
      "https://app.dimensions.ai/details/publication/pub.1044159570"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000270.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-40453-5_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40453-5_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40453-5_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40453-5_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40453-5_3'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      23 PREDICATES      59 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-40453-5_3 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N05db72adccfb42bd86638dd7e12e5d16
4 schema:citation sg:pub.10.1038/nbt0804-1035
5 sg:pub.10.1038/srep01448
6 sg:pub.10.1186/1471-2105-13-259
7 sg:pub.10.1186/1471-2105-9-556
8 https://doi.org/10.1002/jcc.20011
9 https://doi.org/10.1002/pro.5560071126
10 https://doi.org/10.1002/prot.20264
11 https://doi.org/10.1002/prot.20921
12 https://doi.org/10.1002/prot.23181
13 https://doi.org/10.1002/prot.24100
14 https://doi.org/10.1006/jmbi.2001.4762
15 https://doi.org/10.1016/0022-2836(70)90057-4
16 https://doi.org/10.1016/0960-9822(93)90255-m
17 https://doi.org/10.1016/s0076-6879(04)83004-0
18 https://doi.org/10.1016/s0959-440x(96)80058-3
19 https://doi.org/10.1073/pnas.0704422105
20 https://doi.org/10.1073/pnas.89.22.10915
21 https://doi.org/10.1073/pnas.95.11.5913
22 https://doi.org/10.1089/cmb.2004.11.1061
23 https://doi.org/10.1093/bib/bbs052
24 https://doi.org/10.1093/bioinformatics/btg1086
25 https://doi.org/10.1093/bioinformatics/btq066
26 https://doi.org/10.1093/bioinformatics/bts103
27 https://doi.org/10.1093/nar/28.1.235
28 https://doi.org/10.1093/nar/gki524
29 https://doi.org/10.1093/protein/11.9.739
30 https://doi.org/10.1093/protein/9.9.727
31 https://doi.org/10.1101/gr.2821705
32 https://doi.org/10.1137/s0895479801383877
33 https://doi.org/10.1145/369133.369199
34 https://doi.org/10.1145/565196.565209
35 https://doi.org/10.1371/journal.pcbi.0040010
36 schema:datePublished 2013
37 schema:datePublishedReg 2013-01-01
38 schema:description A variety of methods have been proposed for structure similarity calculation, which are called structure alignment or superposition. One major shortcoming in current structure alignment algorithms is in their inherent design, which is based on local structure similarity. In this work, we propose a method to incorporate global information in obtaining optimal alignments and superpositions. Our method, when applied to optimizing the TM-score and the GDT score, produces significantly better results than current state-of-the-art protein structure alignment tools. Specifically, if the highest TM-score found by TMalign is lower than 0.6 and the highest TM-score found by one of the tested methods is higher than 0.5, there is a probability of 42% that TMalign failed to find TM-scores higher than 0.5, while the same probability is reduced to 2% if our method is used. This could significantly improve the accuracy of fold detection if the cutoff TM-score of 0.5 is used. In addition, existing structure alignment algorithms focus on structure similarity alone and simply ignore other important similarities, such as sequence similarity. Our approach has the capacity to incorporate multiple similarities into the scoring function. Results show that sequence similarity aids in finding high quality protein structure alignments that are more consistent with eye-examined alignments in HOMSTRAD. Even when structure similarity itself fails to find alignments with any consistency with eye-examined alignments, our method remains capable of finding alignments highly similar to, or even identical to, eye-examined alignments.
39 schema:editor Nd2ac210dc9f746bbb94d7bde3f2d011f
40 schema:genre chapter
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N9bc59816ab32431da90cc6e27f066482
44 schema:name Towards Reliable Automatic Protein Structure Alignment
45 schema:pagination 18-32
46 schema:productId N24863ee0f96c471caf5590e02d3b81d2
47 N2f649d4e104341e3bf7780b02116dd31
48 N3eb0b3a78f4242ee88ee038da5c5b7e5
49 schema:publisher N83761058dd744b888ee0cec49e55c2b7
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044159570
51 https://doi.org/10.1007/978-3-642-40453-5_3
52 schema:sdDatePublished 2019-04-15T16:19
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N3dee696b465945439b57bebeb249f343
55 schema:url http://link.springer.com/10.1007/978-3-642-40453-5_3
56 sgo:license sg:explorer/license/
57 sgo:sdDataset chapters
58 rdf:type schema:Chapter
59 N05db72adccfb42bd86638dd7e12e5d16 rdf:first sg:person.0743012711.78
60 rdf:rest N9eb39eda177545ae83c7c00a255f036e
61 N24863ee0f96c471caf5590e02d3b81d2 schema:name dimensions_id
62 schema:value pub.1044159570
63 rdf:type schema:PropertyValue
64 N2f649d4e104341e3bf7780b02116dd31 schema:name doi
65 schema:value 10.1007/978-3-642-40453-5_3
66 rdf:type schema:PropertyValue
67 N3dee696b465945439b57bebeb249f343 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N3eb0b3a78f4242ee88ee038da5c5b7e5 schema:name readcube_id
70 schema:value d2590a1562f6fa4e1afef3a83000e95a70f75b2c48976a62fdb428054868e2cf
71 rdf:type schema:PropertyValue
72 N83761058dd744b888ee0cec49e55c2b7 schema:location Berlin, Heidelberg
73 schema:name Springer Berlin Heidelberg
74 rdf:type schema:Organisation
75 N9bc59816ab32431da90cc6e27f066482 schema:isbn 978-3-642-40452-8
76 978-3-642-40453-5
77 schema:name Algorithms in Bioinformatics
78 rdf:type schema:Book
79 N9eb39eda177545ae83c7c00a255f036e rdf:first sg:person.01314123720.90
80 rdf:rest Na3aef4203a874bee8036eba3cc48bc99
81 Na3aef4203a874bee8036eba3cc48bc99 rdf:first sg:person.01137000414.40
82 rdf:rest Nfddd1d3048c14efcba72a9277ccb5fc0
83 Nbb4c4f55ee87490fa767d61f579ccc40 schema:familyName Darling
84 schema:givenName Aaron
85 rdf:type schema:Person
86 Nc05c80c8f8ee46879941863bbf00d999 schema:familyName Stoye
87 schema:givenName Jens
88 rdf:type schema:Person
89 Nc21f8d78984f4375bdea200a810c17b8 rdf:first Nc05c80c8f8ee46879941863bbf00d999
90 rdf:rest rdf:nil
91 Nd2ac210dc9f746bbb94d7bde3f2d011f rdf:first Nbb4c4f55ee87490fa767d61f579ccc40
92 rdf:rest Nc21f8d78984f4375bdea200a810c17b8
93 Nfddd1d3048c14efcba72a9277ccb5fc0 rdf:first sg:person.0621576316.79
94 rdf:rest rdf:nil
95 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
96 schema:name Physical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
99 schema:name Other Physical Sciences
100 rdf:type schema:DefinedTerm
101 sg:person.01137000414.40 schema:affiliation https://www.grid.ac/institutes/grid.9227.e
102 schema:familyName Bu
103 schema:givenName Dongbo
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137000414.40
105 rdf:type schema:Person
106 sg:person.01314123720.90 schema:affiliation https://www.grid.ac/institutes/grid.35030.35
107 schema:familyName Li
108 schema:givenName Shuai Cheng
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314123720.90
110 rdf:type schema:Person
111 sg:person.0621576316.79 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
112 schema:familyName Li
113 schema:givenName Ming
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621576316.79
115 rdf:type schema:Person
116 sg:person.0743012711.78 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
117 schema:familyName Cui
118 schema:givenName Xuefeng
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743012711.78
120 rdf:type schema:Person
121 sg:pub.10.1038/nbt0804-1035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006061272
122 https://doi.org/10.1038/nbt0804-1035
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/srep01448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016407522
125 https://doi.org/10.1038/srep01448
126 rdf:type schema:CreativeWork
127 sg:pub.10.1186/1471-2105-13-259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019753512
128 https://doi.org/10.1186/1471-2105-13-259
129 rdf:type schema:CreativeWork
130 sg:pub.10.1186/1471-2105-9-556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026380798
131 https://doi.org/10.1186/1471-2105-9-556
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1002/jcc.20011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006365673
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/pro.5560071126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006964803
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/prot.20264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027955415
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/prot.20921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002979620
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1002/prot.23181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036141611
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/prot.24100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018183183
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1006/jmbi.2001.4762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039924135
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/0022-2836(70)90057-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021169618
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/0960-9822(93)90255-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1034028899
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/s0076-6879(04)83004-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026092698
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s0959-440x(96)80058-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000115049
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1073/pnas.0704422105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002156726
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1073/pnas.89.22.10915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010234644
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1073/pnas.95.11.5913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017476898
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1089/cmb.2004.11.1061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245269
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/bib/bbs052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050027720
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/bioinformatics/btg1086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004943838
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1093/bioinformatics/btq066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027562842
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1093/bioinformatics/bts103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013058916
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1093/nar/28.1.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035055456
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/nar/gki524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053671309
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/protein/11.9.739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023568040
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/protein/9.9.727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011273110
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1101/gr.2821705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045219682
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1137/s0895479801383877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062881682
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1145/369133.369199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037350583
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1145/565196.565209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026589684
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1371/journal.pcbi.0040010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050759016
188 rdf:type schema:CreativeWork
189 https://www.grid.ac/institutes/grid.35030.35 schema:alternateName City University of Hong Kong
190 schema:name City University of Hong Kong, Hong Kong, China
191 rdf:type schema:Organization
192 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
193 schema:name University of Waterloo, Ontario, Canada
194 rdf:type schema:Organization
195 https://www.grid.ac/institutes/grid.9227.e schema:alternateName Chinese Academy of Sciences
196 schema:name Chinese Academy of Sciences, Beijing, China
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...