An Automatic Email Management Approach Using Data Mining Techniques View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Gunjan Soni , C. I. Ezeife

ABSTRACT

Email mining provides solution to email overload problem by automatically placing emails into some meaningful and similar groups based on email subject and contents. Existing email mining systems such as BuzzTrack, do not consider the semantic similarity between email contents, and when large number of email messages are clustered to a single folder it retains the problem of email overload. The goal of this paper is to solve the problem of email overload through semantically structuring the user’s email by automatically organizing email in folders and sub-folders using data mining clustering technique and extracting important terms from created folders using Apriori-based method for folder identification. This paper proposes a system named AEMS for automatic folder and sub-folder creation and later indexing the created folders. For AEMS module, a novel approach named Semantic non-parametric K-Means++ clustering is proposed for folder creation. Experiments show the effectiveness and efficiency of the proposed techniques using large volumes of email datasets. More... »

PAGES

260-267

Book

TITLE

Data Warehousing and Knowledge Discovery

ISBN

978-3-642-40130-5
978-3-642-40131-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-40131-2_22

DOI

http://dx.doi.org/10.1007/978-3-642-40131-2_22

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035810993


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Windsor", 
          "id": "https://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "School of Computer Science, University of Windsor, Windsor, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soni", 
        "givenName": "Gunjan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Windsor", 
          "id": "https://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "School of Computer Science, University of Windsor, Windsor, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ezeife", 
        "givenName": "C. I.", 
        "id": "sg:person.01200460536.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200460536.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/b978-1-55860-377-6.50048-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002050789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1216295.1216331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005583424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1376815.1376819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006463637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11227-008-0216-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010603860", 
          "https://doi.org/10.1007/s11227-008-0216-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dss.2005.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018442073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1242572.1242586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040296497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/etcs.2010.238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094889321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1117822.1117837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099236906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1117822.1117837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099236906"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Email mining provides solution to email overload problem by automatically placing emails into some meaningful and similar groups based on email subject and contents. Existing email mining systems such as BuzzTrack, do not consider the semantic similarity between email contents, and when large number of email messages are clustered to a single folder it retains the problem of email overload. The goal of this paper is to solve the problem of email overload through semantically structuring the user\u2019s email by automatically organizing email in folders and sub-folders using data mining clustering technique and extracting important terms from created folders using Apriori-based method for folder identification. This paper proposes a system named AEMS for automatic folder and sub-folder creation and later indexing the created folders. For AEMS module, a novel approach named Semantic non-parametric K-Means++ clustering is proposed for folder creation. Experiments show the effectiveness and efficiency of the proposed techniques using large volumes of email datasets.", 
    "editor": [
      {
        "familyName": "Bellatreche", 
        "givenName": "Ladjel", 
        "type": "Person"
      }, 
      {
        "familyName": "Mohania", 
        "givenName": "Mukesh K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-40131-2_22", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-40130-5", 
        "978-3-642-40131-2"
      ], 
      "name": "Data Warehousing and Knowledge Discovery", 
      "type": "Book"
    }, 
    "name": "An Automatic Email Management Approach Using Data Mining Techniques", 
    "pagination": "260-267", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-40131-2_22"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aa9773f5206144f69229bddbc1b4ee1d80409f6103ed08a45ab7c3cbe9119828"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035810993"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-40131-2_22", 
      "https://app.dimensions.ai/details/publication/pub.1035810993"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000265.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-40131-2_22"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40131-2_22'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40131-2_22'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40131-2_22'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40131-2_22'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-40131-2_22 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N40ac243851f3472eb0f65688c3e45479
4 schema:citation sg:pub.10.1007/s11227-008-0216-y
5 https://doi.org/10.1016/b978-1-55860-377-6.50048-7
6 https://doi.org/10.1016/j.dss.2005.11.003
7 https://doi.org/10.1109/etcs.2010.238
8 https://doi.org/10.1145/1216295.1216331
9 https://doi.org/10.1145/1242572.1242586
10 https://doi.org/10.1145/1376815.1376819
11 https://doi.org/10.3115/1117822.1117837
12 schema:datePublished 2013
13 schema:datePublishedReg 2013-01-01
14 schema:description Email mining provides solution to email overload problem by automatically placing emails into some meaningful and similar groups based on email subject and contents. Existing email mining systems such as BuzzTrack, do not consider the semantic similarity between email contents, and when large number of email messages are clustered to a single folder it retains the problem of email overload. The goal of this paper is to solve the problem of email overload through semantically structuring the user’s email by automatically organizing email in folders and sub-folders using data mining clustering technique and extracting important terms from created folders using Apriori-based method for folder identification. This paper proposes a system named AEMS for automatic folder and sub-folder creation and later indexing the created folders. For AEMS module, a novel approach named Semantic non-parametric K-Means++ clustering is proposed for folder creation. Experiments show the effectiveness and efficiency of the proposed techniques using large volumes of email datasets.
15 schema:editor N180d6e424e534999a361d1a6aeac434d
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N33f1123ac2f54d55bb2db02d495a507a
20 schema:name An Automatic Email Management Approach Using Data Mining Techniques
21 schema:pagination 260-267
22 schema:productId N40ffa2e2262b4358a63a2369221c3918
23 N5f84bb09d0a54daba132c320fdf0a8cc
24 Ndf83806180734ad9833f2a1f16846c2c
25 schema:publisher Ndc1d1d347cb441e797e73f4bc01462ab
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035810993
27 https://doi.org/10.1007/978-3-642-40131-2_22
28 schema:sdDatePublished 2019-04-15T21:59
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N221bfdefcd694d84b24a77ff1139cd96
31 schema:url http://link.springer.com/10.1007/978-3-642-40131-2_22
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N180d6e424e534999a361d1a6aeac434d rdf:first N3b4bbf0983fb428383de20e243bdec85
36 rdf:rest N7e79ec30469f41d5a2f7ef7551e9ab43
37 N221bfdefcd694d84b24a77ff1139cd96 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N33f1123ac2f54d55bb2db02d495a507a schema:isbn 978-3-642-40130-5
40 978-3-642-40131-2
41 schema:name Data Warehousing and Knowledge Discovery
42 rdf:type schema:Book
43 N3b4bbf0983fb428383de20e243bdec85 schema:familyName Bellatreche
44 schema:givenName Ladjel
45 rdf:type schema:Person
46 N40ac243851f3472eb0f65688c3e45479 rdf:first N965825a466784ebea76ff1136a90b772
47 rdf:rest Nd1fdb6a4f79a4baeb99b7c9a49ed42af
48 N40ffa2e2262b4358a63a2369221c3918 schema:name doi
49 schema:value 10.1007/978-3-642-40131-2_22
50 rdf:type schema:PropertyValue
51 N47564cc7da3648dcb72ec28b7e36b948 schema:familyName Mohania
52 schema:givenName Mukesh K.
53 rdf:type schema:Person
54 N5f84bb09d0a54daba132c320fdf0a8cc schema:name dimensions_id
55 schema:value pub.1035810993
56 rdf:type schema:PropertyValue
57 N7e79ec30469f41d5a2f7ef7551e9ab43 rdf:first N47564cc7da3648dcb72ec28b7e36b948
58 rdf:rest rdf:nil
59 N965825a466784ebea76ff1136a90b772 schema:affiliation https://www.grid.ac/institutes/grid.267455.7
60 schema:familyName Soni
61 schema:givenName Gunjan
62 rdf:type schema:Person
63 Nd1fdb6a4f79a4baeb99b7c9a49ed42af rdf:first sg:person.01200460536.41
64 rdf:rest rdf:nil
65 Ndc1d1d347cb441e797e73f4bc01462ab schema:location Berlin, Heidelberg
66 schema:name Springer Berlin Heidelberg
67 rdf:type schema:Organisation
68 Ndf83806180734ad9833f2a1f16846c2c schema:name readcube_id
69 schema:value aa9773f5206144f69229bddbc1b4ee1d80409f6103ed08a45ab7c3cbe9119828
70 rdf:type schema:PropertyValue
71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information and Computing Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
75 schema:name Information Systems
76 rdf:type schema:DefinedTerm
77 sg:person.01200460536.41 schema:affiliation https://www.grid.ac/institutes/grid.267455.7
78 schema:familyName Ezeife
79 schema:givenName C. I.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200460536.41
81 rdf:type schema:Person
82 sg:pub.10.1007/s11227-008-0216-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1010603860
83 https://doi.org/10.1007/s11227-008-0216-y
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/b978-1-55860-377-6.50048-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002050789
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.dss.2005.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018442073
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1109/etcs.2010.238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094889321
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1145/1216295.1216331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005583424
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1145/1242572.1242586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040296497
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1145/1376815.1376819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006463637
96 rdf:type schema:CreativeWork
97 https://doi.org/10.3115/1117822.1117837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099236906
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.267455.7 schema:alternateName University of Windsor
100 schema:name School of Computer Science, University of Windsor, Windsor, ON, Canada
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...